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10. Rotational Motion 
and Angular Momentum



10.1 Angular 

Acceleration



Reminder: Uniform circular motion

• Textbook chapter 6 (should review)

• Angle as function of time: 𝜃 𝑡

• Angular velocity:

𝜔 ≡
Δ𝜃

Δ𝑡
(really a derivative, 𝜔 ≡

d𝜃

d𝑡
)

• Relationship to linear velocity 𝑣 and radius 𝑟:

𝑣 = 𝑟𝜔





Angular acceleration

• Linear acceleration 𝑎: rate of change of linear velocity

𝑎 ≡
Δ𝑣

Δ𝑡
(really a derivative, 𝑎 ≡

d𝑣

d𝑡
)

Units: velocity per second = (m/s)/s = m/s2

• Angular acceleration 𝛼 (alpha): rate of change of angular velocity

𝛼 ≡
Δ𝜔

Δ𝑡
(really a derivative, 𝛼 ≡

d𝜔

d𝑡
)

Units: rad/s2



How to solve a problem

• Always calculate the complete analytical expression first, and only 

plug in numbers in the end!

• Unit conversions cannot be part of the analytical expression, since 

they are part of the number.

• Separate the numerical calculation into pure numbers and pure 

units.

• Final answer should have the same number of significant figures 

as the least precise numerical quantity in the question.



Problem: A bicycle wheel is spinning from rest to 250 rpm in 5.00 s. 
Calculate the angular acceleration in rad/s2. 

Analytical solution:

𝛼 =
Δ𝜔

Δ𝑡
=

𝜔2 − 𝜔1

Δ𝑡
Numerical solution: 𝜔1 = 0, 𝜔2 = 250 rpm, Δ𝑡 = 5 s

𝛼 =
𝜔2 − 𝜔1

Δ𝑡
≈

250 − 0 rpm

5 s
=

250 rpm

5 s
Convert units:

1 revolution = 2𝜋 radians, 1 minute = 60 seconds

⟹ 1 rpm = revolutions per minute = (2𝜋 rad)/60s

𝛼 =
250 ⋅ (2𝜋 rad/60 s)

5 s
=

250 ⋅ 2𝜋

60 ⋅ 5
⋅

rad

s2
≈ 5.24 rad/s2



Problem: If we slam on the brakes, causing an angular acceleration 

of −87.3 rad/s2, how long does it take the wheel to stop?

Analytical solution:

𝛼 =
Δ𝜔

Δ𝑡
⟹ Δ𝑡 =

Δ𝜔

𝛼
=

𝜔2 − 𝜔1

𝛼

Numerical solution: 𝜔1 = 250 rpm, 𝜔2 = 0, 𝛼 = −87.3
rad

s2

Δ𝑡 =
𝜔2 − 𝜔1

𝛼
≈

0 − 250 rpm

−87.3 rad/s2
=

−250 ⋅ (2𝜋 rad/60 s)

−87.3 rad/s2

=
−250 ⋅ 2𝜋

−87.3 ⋅ 60
⋅

rad ⋅ s2

rad ⋅ s
= 0.300 s



Linear vs. angular acceleration

𝑣 = 𝑟𝜔

𝑎 ≡
Δ𝑣

Δ𝑡
, 𝛼 ≡

Δ𝜔

Δ𝑡

𝑟 is constant, so Δ𝑟 = 0:

Δ𝑣 = Δ 𝑟𝜔 = 𝑟Δ𝜔

𝑎 =
Δ𝑣

Δ𝑡
= 𝑟

Δ𝜔

Δ𝑡
= 𝑟𝛼

⟹ 𝑎 = 𝑟𝛼



Problem: A powerful motorcycle can accelerate from 0 to 30.0 m/s 
(about 108 km/h) in 4.20 s. What is the angular acceleration of its 
0.320-m-radius wheels?

Analytical solution:

𝑎 = 𝑟𝛼 ⟹ 𝛼 =
𝑎

𝑟

𝑎 =
Δ𝑣

Δ𝑡
⟹ 𝛼 =

Δ𝑣/Δ𝑡

𝑟
=

Δ𝑣

𝑟Δ𝑡
=

𝑣2 − 𝑣1

𝑟Δ𝑡

Numerical solution:

𝛼 =
𝑣2 − 𝑣1

𝑟Δ𝑡
=

(30 − 0) m/s

0.32 m ⋅ 4.2 s
= 22.3

rad

s2

Radians are dimensionless (rad ≡ 1), no need to convert units!



Quick review of radians

• If 𝑥 is the arc length and 𝑟 is the radius, then the angle 

in radians is:

𝜃 ≡
𝑥

𝑟

• Note: 𝑥 and 𝑟 both measured in meters, so in terms of 

units, rad = m/m = 1!

• 1 rad: if 𝑥 = 𝑟.

• Full circle: 𝑥 = 2𝜋𝑟 (circumference), so 𝜃 = 2𝜋.

• Angles are specified in radians by default. Degrees 

must be denoted explicitly with °.



Tangential vs. centripetal acceleration

• Tangential acceleration 𝑎𝑡 = 𝑟𝛼: 

change in speed.

• Centripetal acceleration 𝑎𝑐 = 𝑣2/𝑟: 

change in direction.

• Always perpendicular to each other.



Analogous quantities: linear vs. angular

Linear/Translational Angular/Rotational Relationship

Position 𝑥 Angle 𝜃 𝑥 = 𝑟𝜃

Velocity 𝑣 Angular velocity 𝜔 𝑣 = 𝑟𝜔

Acceleration 𝑎 Angular acceleration 𝛼 𝑎 = 𝑟𝛼



10.2 Kinematics of 

Rotational Motion



Velocity and acceleration

• Constant 𝑎, starting velocity 𝑣0:

𝑣 = 𝑣0 + 𝑎𝑡

• Since 𝑣 = 𝑟𝜔 and 𝑎 = 𝑟𝛼:

𝑟𝜔 = 𝑟𝜔0 + 𝑟𝛼𝑡

• Cancel 𝑟:

𝜔 = 𝜔0 + 𝛼𝑡

Note: Constant 𝛼.



Adding position / angle

• With position (𝑥0 = initial position, 𝑎 still constant):

𝑥 = 𝑥0 + 𝑣0𝑡 +
1

2
𝑎𝑡2

(Derived using calculus, by integrating 𝑣 = 𝑣0 + 𝑎𝑡. See chapter 2 

for non-calculus derivation.)

• Angular version, using 𝑥 = 𝑟𝜃:

𝜃 = 𝜃0 + 𝜔0𝑡 +
1

2
𝛼𝑡2



Equations without time

• Sometimes it’s convenient to eliminate 𝑡 from the equation:

𝑣2 = 𝑣0
2 + 2𝑎 𝑥 − 𝑥0

(See chapter 2 for derivation)

• Angular version:

𝜔2 = 𝜔0
2 + 2𝛼 𝜃 − 𝜃0



Analogous equations: linear vs. angular

Linear/Translational Angular/Rotational

𝑣 = 𝑣0 + 𝑎𝑡 𝜔 = 𝜔0 + 𝛼𝑡

𝑥 = 𝑥0 + 𝑣0𝑡 +
1

2
𝑎𝑡2 𝜃 = 𝜃0 + 𝜔0𝑡 +

1

2
𝛼𝑡2

𝑣2 = 𝑣0
2 + 2𝑎 𝑥 − 𝑥0 𝜔2 = 𝜔0

2 + 2𝛼 𝜃 − 𝜃0

(Constant 𝑎 and 𝛼)



10.3 Dynamics of Rotational 

Motion: Rotational Inertia



Torque

• Recall from chapter 9 that torque 𝜏 is 

the angular analogue of force. In vector 

terms:

𝝉 ≡ 𝒓 × 𝑭, 𝜏 = |𝝉| = 𝑟𝐹 sin 𝜃

• In circular motion, the radius and force 

are perpendicular, so:

𝜃 =
𝜋

2
 ⟹  sin 𝜃 = 1 ⟹  𝜏 = 𝑟𝐹



Spinning a wheel

• Intuitively:

• More force = more acceleration

• More massive wheel = less 

acceleration

• Smaller radius (push closer to 

center) = less acceleration



Torque

• Newton’s 2nd law: 

𝐹 = 𝑚𝑎

• Since 𝑎 = 𝑟𝛼:

𝐹 = 𝑚𝑟𝛼

• Torque 𝜏 = 𝑟𝐹. Multiply both sides by 𝑟:

𝐹𝑟 = 𝑚𝑟2𝛼 ⟹  𝜏 = 𝑚𝑟2𝛼

• Define moment of inertia 𝐼 ≡ 𝑚𝑟2:

𝜏 = 𝐼𝛼



Analogous quantities

Linear/Translational Angular/Rotational

2nd law: 𝐹 = 𝑚𝑎 2nd law: 𝜏 = 𝐼𝛼

Force 𝐹 Torque 𝜏

Acceleration 𝑎 Angular acceleration 𝛼

Mass 𝑚 Moment of inertia 𝐼 ≡ 𝑚𝑟2



Moment of inertia for non-point mass

• For a point mass, 𝐼 = 𝑚𝑟2.

• For other objects, we sum over all the point masses, each with its 

own 𝑚 and 𝑟2.

• Without calculus: 𝐼 = σ𝑖 𝑚𝑖𝑟𝑖
2, where 𝑖 is an index enumerating all 

the masses. For example, for two masses 𝑖 = 1,2:

𝐼 = 𝑚1𝑟1
2 + 𝑚2𝑟2

2

• With calculus: Using integrals (for continuous objects)







Problem: A father pushing a playground merry-go-round exerts a 

force of 250 N at the edge of the 50.0-kg merry-go-round, which has 

a 1.50 m radius. Calculate the angular acceleration produced when 

no one is on the merry-go-round.

Analytical solution:

• Torque: 𝜏 = 𝑟𝐹

• Moment of inertia (from table): 𝐼 =
1

2
𝑚𝑟2

• Newton’s 2nd law:

𝜏 = 𝐼𝛼 ⟹  𝛼 =
𝜏

𝐼
=

𝑟𝐹

1
2

𝑚𝑟2
=

2𝐹

𝑚𝑟



Problem: A father pushing a playground merry-go-round exerts a 

force of 250 N at the edge of the 50.0-kg merry-go-round, which has 

a 1.50 m radius. Calculate the angular acceleration produced when 

no one is on the merry-go-round.

Numerical solution:

𝛼 =
2𝐹

𝑚𝑟
≈

2 ⋅ 250 N

50 kg ⋅ 1.5 m
=

2 ⋅ 250

50 ⋅ 1.5

N

kg ⋅ m
≈ 6.67

N

kg ⋅ m

Units:  N =
kg ⋅ m

s2
 ⟹  

N

kg ⋅ m
=

1

kg ⋅ m

kg ⋅ m

s2
=

1

s2
=

rad

s2

𝛼 ≈ 6.67 rad/s2



Problem: Calculate the angular acceleration produced when an 18.0-

kg child sits 1.25 m away from the center.

Analytical solution: Add the two moments of inertial together (child 

= point mass):

𝐼disk =
1

2
𝑚disk𝑟disk

2 , 𝐼child = 𝑚child𝑟child
2

Therefore (𝑟 for the torque = 𝑟disk!):

𝛼 =
𝜏

𝐼
=

𝑟disk𝐹

1
2

𝑚disk𝑟disk
2 + 𝑚child𝑟child

2



Problem: Calculate the angular acceleration produced when an 18.0-

kg child sits 1.25 m away from the center.

Numerical solution:

𝛼 =
𝑟disk𝐹

1
2

𝑚disk𝑟disk
2 + 𝑚child𝑟child

2

=
1.5 m ⋅ 250 N

1
2

(50 kg) 1.5 m 2 + 18 kg 1.25 m 2

= 4.44
m ⋅ N

kg ⋅ m2

= 4.44 rad/s2



10.4 Rotational Kinetic 

Energy: Work and Energy 

Revisited



Reminder: work

• Definition of work 𝑊 (chapter 7):

𝑊 ≡ 𝑭 ⋅ 𝒔 = 𝐹𝑠 cos 𝜃

𝑭 = force vector being applied (𝐹 = |𝑭|)

𝒔 = displacement vector (𝑠 = |𝒔|)

⋅ = dot product of vectors

• Example: Applying a force of 𝐹 = 1 N along a distance of 𝑠 = 1 m, 

with the force parallel to the distance (𝜃 = 0, cos 𝜃 = 1), results in 

work of 𝑊 = 1 N ⋅ m.



Rotational work

• Applying a force on the disk, parallel to the tangent, along an arc 

length s:

𝑊 = 𝐹𝑠

• Torque is 𝜏 = 𝑟𝐹, so 𝐹 = 𝜏/𝑟. Arc length is 𝑠 = 𝑟𝜃:

𝑊 =
𝜏

𝑟
⋅ 𝑟𝜃 = 𝜏𝜃

Therefore rotational work is 𝑊 = 𝜏𝜃.



Reminder: kinetic energy

• Equation of motion without time: 𝑣2 − 𝑣0
2 = 2𝑎 𝑥 − 𝑥0

• Displacement: s = 𝑥 − 𝑥0

• Rename 𝑣0 to 𝑣1 (initial velocity) and 𝑣 to 𝑣2 (final velocity)

𝑣2
2 − 𝑣1

2 = 2𝑎𝑠 ⟹  𝑠 =
𝑣2

2 − 𝑣1
2

2𝑎

• Plug into definition of work along with Newton’s 2nd law 𝐹 = 𝑚𝑎:

𝑊 = 𝐹𝑠 = 𝑚𝑎
𝑣2

2 − 𝑣1
2

2𝑎
=

1

2
𝑚𝑣2

2 −
1

2
𝑚𝑣1

2

This is the work-energy theorem: work is the change in kinetic energy.



Note about notation…

• The textbook uses KE for the kinetic energy and PE for potential 

energy.

• This is a very confusing notation since it looks like K times E or P 

times E.

• In the lectures we will use the (standard) notation 𝐸𝑘  for kinetic 

energy and 𝐸𝑝 for potential energy.



Rotational kinetic energy

• From the work-energy theorem, linear kinetic energy for a particle 

moving at velocity 𝑣 is 𝐸𝑘 =
1

2
𝑚𝑣2.

• As usual, there are angular analogues, which can be derived 

similarly:

𝑊 =
1

2
𝐼𝜔2

2 −
1

2
𝐼𝜔1

2, 𝐸𝑘 =
1

2
𝐼𝜔2

• Again, 𝐼 is analogous to mass 𝑚 and 𝜔 to linear velocity 𝑣.



Total kinetic energy

• Sometimes there is both linear and angular kinetic energy, for 

example for a rolling object.

• The total kinetic energy (linear + angular) is:

𝐸𝑘 =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 



Problem: Calculate the final speed of a solid cylinder that rolls down 

a 2.00-m-high incline. The cylinder starts from rest, has a mass of 

0.750 kg, and has a radius of 4.00 cm.

Analytical solution: 

• The cylinder starts at rest, with only potential energy 𝐸𝑝 = 𝑚𝑔ℎ.

• It ends at ℎ = 0, so with no potential energy.

• The potential energy was converted to linear + angular kinetic 

energy:

  𝑚𝑔ℎ =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2



Analytical solution (cont.):

• The moment of inertia for a cylinder is 𝐼 =
1

2
𝑚𝑟2.

• We want to isolate the speed 𝑣. The angular velocity is 𝜔 = 𝑣/𝑟.

𝑚𝑔ℎ =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 =

1

2
𝑚𝑣2 +

1

2

1

2
𝑚𝑟2

𝑣

𝑟

2

=
1

2
𝑚𝑣2 +

1

4
𝑚𝑣2 =

3

4
𝑚𝑣2

Divide by 𝑚:

𝑔ℎ =
3

4
𝑣2  ⟹  𝑣 =

4

3
𝑔ℎ

1/2



Numerical solution:

𝑣 =
4

3
𝑔ℎ

1/2

≈
4

3
9.8

m

s2
2 m

1/2

=
4

3
⋅ 9.8 ⋅ 2

m

s2
⋅ m

1/2

≈ 26.1
m2

s2

1/2

≈ 5.11 m/s



Analogous quantities

Linear/Translational Angular/Rotational

Work 𝑊 = 𝐹𝑠 Work 𝑊 = 𝜏𝜃

Kinetic energy 𝐸𝑘 =
1

2
𝑚𝑣2 Kinetic energy 𝐸𝑘 =

1

2
𝐼𝜔2



10.5 Angular Momentum 

and Its Conservation



Angular momentum

• Linear momentum 𝑝 is defined as

𝑝 ≡ 𝑚𝑣

• Quiz: How can we define angular momentum (denoted 𝐿)?

• Answer: Since 𝐼 is analogous to 𝑚 and 𝜔 is analogous to 𝑣…

𝐿 = 𝐼𝜔



Example: Angular momentum of Earth

• Earth is a sphere, so (from the table):

𝐼 =
2

5
𝑚𝑟2  ⟹  𝐿 = 𝐼𝜔 =

2

5
𝑚𝑟2𝜔

• 𝑚 ≈ 5.98 × 1024 kg

• 𝑟 ≈ 6.38 × 106 m

• 𝜔 ≈ 1 revolution per day ≈ 2𝜋 rad/ 24 × 60 × 60 s ≈ 7.27 × 10−5 rad/s

𝐿 ≈
2

5
5.98 × 1024 kg 6.38 × 106 m 2 7.27 × 10−5

rad

s

≈ 7.08 × 1033 kg ⋅ m2/s



Newton’s 2nd law

• In linear motion, force is the change in momentum over time:

𝐹 =
Δ𝑝

Δ𝑡
• Since 𝑝 = 𝑚𝑣, if the mass is constant we get the simpler form 

𝐹 = 𝑚
Δ𝑣

Δ𝑡
= 𝑚𝑎

• Quiz: What will be the analogous law for angular motion?

• Answer: 

𝜏 =
Δ𝐿

Δ𝑡
, and if 𝐼 is constant: 𝜏 = 𝐼

Δ𝜔

Δ𝑡
= 𝐼𝛼 as we found before!



Conservation of angular momentum

• We learned in chapter 8 that linear momentum is conserved.

• To prove this, note that if 𝐹 = 0 then

𝐹 =
Δ𝑝

Δ𝑡
 ⟹  Δ𝑝 = 0

So momentum never changes (it is conserved) unless a force is applied.

• Similarly, angular momentum is conserved if 𝜏 = 0:

𝜏 =
Δ𝐿

Δ𝑡
 ⟹  Δ𝐿 = 0



Conservation of angular momentum

• This is why the Earth keeps spinning around itself and around the 

Sun!

• As long as no external torque is applied to it, its speed of rotation 

will never change.

• There are actually some minor torques being applied, e.g. the gravity of 

the Moon, slowing down the Earth’s rotation ≈ 65.7 ns/day!



• Another famous example is ice skating.

• The skater can keep spinning for a long 

time, because there is almost no 

friction.

• Also, by pulling her arms in, she can 

increase her angular speed.

• This is because the moment of inertia is 

proportional to 𝑟2.

• By decreasing 𝑟 (pulling arms in), 𝐼 

also decreases.

• Since 𝐿 = 𝐼𝜔 is constant, if 𝐼 decreases, 

𝜔 must increase.



Video

• Here’s a video demonstrating the use of angular momentum in ice 

skating:

https://youtu.be/FmnkQ2ytlO8

https://youtu.be/FmnkQ2ytlO8
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