PHYS 1P22/92 Prof. Barak Shoshany Spring 2024

10. Rotational Motion and Angular Momentum

10.1 Angular Acceleration

Reminder: Uniform circular motion

- Textbook chapter 6 (should review)
- Angle as function of time: $\theta(t)$
- Angular velocity:

$$\omega \equiv \frac{\Delta \theta}{\Delta t} \qquad (really a derivative, \omega \equiv \frac{d\theta}{dt})$$

• Relationship to linear velocity *v* and radius *r*:

 $v = r\omega$

Angular acceleration

• Linear acceleration *a*: rate of change of linear velocity

$$a \equiv \frac{\Delta v}{\Delta t}$$
 (really a derivative, $a \equiv \frac{dv}{dt}$)
Units: velocity per second = (m/s)/s = m/s²

• Angular acceleration α (alpha): rate of change of angular velocity

$$\alpha \equiv \frac{\Delta \omega}{\Delta t} \qquad (really a derivative, \alpha \equiv \frac{d\omega}{dt})$$
$$Units: rad/s^2$$

How to solve a problem

- Always calculate the **complete analytical expression** first, and only plug in numbers in the end!
- Unit conversions cannot be part of the analytical expression, since they are part of the number.
- Separate the numerical calculation into pure numbers and pure units.
- Final answer should have the same number of significant figures as the **least precise** numerical quantity in the question.

Problem: A bicycle wheel is spinning from rest to 250 rpm in 5.00 s. Calculate the angular acceleration in rad/s².

Analytical solution:

$$\alpha = \frac{\Delta\omega}{\Delta t} = \frac{\omega_2 - \omega_1}{\Delta t}$$

Numerical solution: $\omega_1 = 0$, $\omega_2 = 250$ rpm, $\Delta t = 5$ s

$$\alpha = \frac{\omega_2 - \omega_1}{\Delta t} \approx \frac{(250 - 0) \text{ rpm}}{5 \text{ s}} = \frac{250 \text{ rpm}}{5 \text{ s}}$$

Convert units:

1 revolution = 2π radians, 1 minute = 60 seconds \Rightarrow 1 rpm = revolutions per minute = $(2\pi \text{ rad})/60\text{s}$ $\alpha = \frac{250 \cdot (2\pi \text{ rad}/60 \text{ s})}{5 \text{ s}} = \frac{250 \cdot 2\pi}{60 \cdot 5} \cdot \frac{\text{rad}}{\text{s}^2} \approx 5.24 \text{ rad/s}^2$ **Problem:** If we slam on the brakes, causing an angular acceleration of -87.3 rad/s^2 , how long does it take the wheel to stop? **Analytical solution:**

$$\alpha = \frac{\Delta \omega}{\Delta t} \implies \Delta t = \frac{\Delta \omega}{\alpha} = \frac{\omega_2 - \omega_1}{\alpha}$$

Numerical solution: $\omega_1 = 250$ rpm, $\omega_2 = 0$, $\alpha = -87.3 \frac{rad}{s^2}$

$$\Delta t = \frac{\omega_2 - \omega_1}{\alpha} \approx \frac{(0 - 250) \text{ rpm}}{-87.3 \text{ rad/s}^2} = \frac{-250 \cdot (2\pi \text{ rad/60 s})}{-87.3 \text{ rad/s}^2}$$
$$= \frac{-250 \cdot 2\pi}{-87.3 \cdot 60} \cdot \frac{\text{rad} \cdot \text{s}^2}{\text{rad} \cdot \text{s}} = 0.300 \text{ s}$$

Linear vs. angular acceleration

$$v = r\omega$$

 $a \equiv \frac{\Delta v}{\Delta t}, \qquad \alpha \equiv \frac{\Delta a}{\Delta t}$

r is constant, so $\Delta r = 0$: $\Delta v = \Delta (r\omega) = r\Delta \omega$ $a = \frac{\Delta v}{\Delta t} = r\frac{\Delta \omega}{\Delta t} = r\alpha$ $\Rightarrow a = r\alpha$

Problem: A powerful motorcycle can accelerate from 0 to 30.0 m/s (about 108 km/h) in 4.20 s. What is the angular acceleration of its 0.320-m-radius wheels?

Analytical solution:

$$a = r\alpha \implies \alpha = \frac{\alpha}{r}$$
$$a = \frac{\Delta v}{\Delta t} \implies \alpha = \frac{\Delta v / \Delta t}{r} = \frac{\Delta v}{r \Delta t} = \frac{\nu_2 - \nu_1}{r \Delta t}$$

Numerical solution:

$$\alpha = \frac{v_2 - v_1}{r\Delta t} = \frac{(30 - 0) \text{ m/s}}{0.32 \text{ m} \cdot 4.2 \text{ s}} = 22.3 \frac{\text{rad}}{\text{s}^2}$$

Radians are dimensionless (rad \equiv 1), no need to convert units!

Quick review of radians

- If *x* is the arc length and *r* is the radius, then the angle in radians is:
 - $\theta \equiv \frac{x}{r}$
- Note: x and r both measured in meters, so in terms of units, rad = m/m = 1!
- 1 rad: if x = r.
- Full circle: $x = 2\pi r$ (circumference), so $\theta = 2\pi$.
- Angles are specified in radians by default. Degrees must be denoted explicitly with °.

Tangential vs. centripetal acceleration

- Tangential acceleration $a_t = r\alpha$: change in speed.
- Centripetal acceleration $a_c = v^2/r$: change in direction.
- Always perpendicular to each other.

Analogous quantities: linear vs. angular

Linear/Translational	Angular/Rotational	Relationship
Position <i>x</i>	Angle θ	$x = r\theta$
Velocity v	Angular velocity ω	$v = r\omega$
Acceleration a	Angular acceleration α	$a = r\alpha$

10.2 Kinematics of Rotational Motion

Velocity and acceleration

• Constant *a*, starting velocity v_0 :

 $v = v_0 + at$

• Since
$$v = r\omega$$
 and $a = r\alpha$:

 $r\omega = r\omega_0 + r\alpha t$

• Cancel *r*:

 $\omega = \omega_0 + \alpha t$

Note: Constant α .

Adding position / angle

• With position (x_0 = initial position, *a* still constant):

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

(Derived using calculus, by integrating $v = v_0 + at$. See chapter 2 for non-calculus derivation.)

• Angular version, using $x = r\theta$:

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

Equations without time

• Sometimes it's convenient to eliminate *t* from the equation: $v^2 = v_0^2 + 2a(x - x_0)$

(See chapter 2 for derivation)

• Angular version:

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

Analogous equations: linear vs. angular

(Constant a and α)

Linear/Translational	Angular/Rotational
$v = v_0 + at$	$\omega = \omega_0 + \alpha t$
$x = x_0 + v_0 t + \frac{1}{2}at^2$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$
$v^2 = v_0^2 + 2a(x - x_0)$	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$

10.3 Dynamics of Rotational Motion: Rotational Inertia

Torque

 Recall from chapter 9 that torque τ is the angular analogue of force. In vector terms:

 $\boldsymbol{\tau} \equiv \boldsymbol{r} \times \boldsymbol{F}, \qquad \boldsymbol{\tau} = |\boldsymbol{\tau}| = rF\sin\theta$

• In circular motion, the radius and force are perpendicular, so:

$$\theta = \frac{\pi}{2} \implies \sin \theta = 1 \implies \tau = rF$$

Spinning a wheel

- Intuitively:
 - More force = more acceleration
 - More massive wheel = less acceleration
 - Smaller radius (push closer to center) = less acceleration

Torque

• Newton's 2nd law:

$$F = ma$$

• Since $a = r\alpha$:

 $F = mr\alpha$

- Torque $\tau = rF$. Multiply both sides by r: $Fr = mr^2 \alpha \implies \tau = mr^2 \alpha$
- Define moment of inertia $I \equiv mr^2$:

 $\tau = I\alpha$

Analogous quantities

Linear/Translational	Angular/Rotational
2^{nd} law: $F = ma$	2^{nd} law: $\tau = I \alpha$
Force F	Torque $ au$
Acceleration a	Angular acceleration $lpha$
Mass m	Moment of inertia $I \equiv mr^2$

Moment of inertia for non-point mass

- For a point mass, $I = mr^2$.
- For other objects, we sum over all the point masses, each with its own m and r^2 .
- Without calculus: $I = \sum_{i} m_{i} r_{i}^{2}$, where *i* is an index enumerating all the masses. For example, for two masses i = 1,2: $I = m_{1} r_{1}^{2} + m_{2} r_{2}^{2}$
 - With calculus: Using integrals (for continuous objects)

Axis Thin rod about axis through center \perp to length $I = \frac{M\ell^2}{12}$

Problem: A father pushing a playground merry-go-round exerts a force of 250 N at the edge of the 50.0-kg merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced when no one is on the merry-go-round.

Analytical solution:

- Torque: $\tau = rF$
- Moment of inertia (from table): $I = \frac{1}{2}mr^2$
- Newton's 2nd law:

$$\tau = I\alpha \implies \alpha = \frac{\tau}{I} = \frac{rF}{\frac{1}{2}mr^2} = \frac{2F}{mr}$$

 $\mathbf{F} \perp r$ for maximum α

Problem: A father pushing a playground merry-go-round exerts a force of 250 N at the edge of the 50.0-kg merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced when no one is on the merry-go-round.

Numerical solution:

$$\alpha = \frac{2F}{mr} \approx \frac{2 \cdot 250 \text{ N}}{50 \text{ kg} \cdot 1.5 \text{ m}} = \frac{2 \cdot 250}{50 \cdot 1.5} \frac{\text{N}}{\text{kg} \cdot \text{m}} \approx 6.67 \frac{\text{N}}{\text{kg} \cdot \text{m}}$$

Units: $\text{N} = \frac{\text{kg} \cdot \text{m}}{\text{s}^2} \implies \frac{\text{N}}{\text{kg} \cdot \text{m}} = \frac{1}{\text{kg} \cdot \text{m}} \frac{\text{kg} \cdot \text{m}}{\text{s}^2} = \frac{1}{\text{s}^2} = \frac{\text{rad}}{\text{s}^2}$
 $\alpha \approx 6.67 \text{ rad/s}^2$

Problem: Calculate the angular acceleration produced when an 18.0-kg child sits 1.25 m away from the center.

Analytical solution: Add the two moments of inertial together (child = point mass):

$$I_{\rm disk} = \frac{1}{2} m_{\rm disk} r_{\rm disk}^2, \qquad I_{\rm child} = m_{\rm child} r_{\rm child}^2$$

Therefore (*r* for the torque = r_{disk} !):

$$\alpha = \frac{\tau}{I} = \frac{r_{\text{disk}}F}{\frac{1}{2}m_{\text{disk}}r_{\text{disk}}^2 + m_{\text{child}}r_{\text{child}}^2}$$

Problem: Calculate the angular acceleration produced when an 18.0-kg child sits 1.25 m away from the center.

Numerical solution:

$$\alpha = \frac{r_{\text{disk}}F}{\frac{1}{2}m_{\text{disk}}r_{\text{disk}}^2 + m_{\text{child}}r_{\text{child}}^2}$$

= $\frac{1.5 \text{ m} \cdot 250 \text{ N}}{\frac{1}{2}(50 \text{ kg})(1.5 \text{ m})^2 + (18 \text{ kg})(1.25 \text{ m})^2}$
= $4.44 \frac{\text{m} \cdot \text{N}}{\text{kg} \cdot \text{m}^2}$
= 4.44 rad/s^2

10.4 Rotational Kinetic Energy: Work and Energy Revisited

Reminder: work

- Definition of work *W* (chapter 7): $W \equiv \mathbf{F} \cdot \mathbf{s} = Fs \cos \theta$
- F = force vector being applied (F = |F|)
- s = displacement vector (s = |s|)
- $\cdot = dot product of vectors$
- Example: Applying a force of F = 1 N along a distance of s = 1 m, with the force parallel to the distance ($\theta = 0, \cos \theta = 1$), results in work of W = 1 N \cdot m.

Rotational work

• Applying a force on the disk, parallel to the tangent, along an arc length s:

$$W = Fs$$

• Torque is
$$\tau = rF$$
, so $F = \tau/r$. Arc length is $s = r\theta$:

$$W = \frac{\tau}{r} \cdot r\theta = \tau\theta$$

 $\boldsymbol{\tau}$

Therefore rotational work is $W = \tau \theta$.

Reminder: kinetic energy

- Equation of motion without time: $v^2 v_0^2 = 2a(x x_0)$
 - Displacement: $s = x x_0$
 - Rename v_0 to v_1 (initial velocity) and v to v_2 (final velocity)

$$v_2^2 - v_1^2 = 2as \implies s = \frac{v_2^2 - v_1^2}{2a}$$

• Plug into definition of work along with Newton's $2^{nd} \text{ law } F = ma$:

$$W = Fs = (ma)\left(\frac{v_2^2 - v_1^2}{2a}\right) = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

This is the work-energy theorem: work is the change in kinetic energy.

Note about notation...

- The textbook uses KE for the kinetic energy and PE for potential energy.
- This is a very confusing notation since it looks like K times E or P times E.
- In the lectures we will use the (standard) notation E_k for kinetic energy and E_p for potential energy.

Rotational kinetic energy

- From the work-energy theorem, linear kinetic energy for a particle moving at velocity v is $E_k = \frac{1}{2}mv^2$.
- As usual, there are angular analogues, which can be derived similarly:

$$W = \frac{1}{2}I\omega_2^2 - \frac{1}{2}I\omega_1^2, \qquad E_k = \frac{1}{2}I\omega^2$$

• Again, *I* is analogous to mass *m* and ω to linear velocity *v*.

Total kinetic energy

- Sometimes there is both linear and angular kinetic energy, for example for a rolling object.
- The total kinetic energy (linear + angular) is:

$$E_k = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

Problem: Calculate the final speed of a solid cylinder that rolls down a 2.00-m-high incline. The cylinder starts from rest, has a mass of 0.750 kg, and has a radius of 4.00 cm.

Analytical solution:

- The cylinder starts at rest, with only potential energy $E_p = mgh$.
- It ends at h = 0, so with no potential energy.
- The potential energy was converted to linear + angular kinetic energy:

$$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

Analytical solution (cont.):

- The moment of inertia for a cylinder is $I = \frac{1}{2}mr^2$.
- We want to isolate the speed v. The angular velocity is $\omega = v/r$.

$$mgh = \frac{1}{2}mv^{2} + \frac{1}{2}I\omega^{2} = \frac{1}{2}mv^{2} + \frac{1}{2}\left(\frac{1}{2}mr^{2}\right)\left(\frac{v}{r}\right)^{2}$$
$$= \frac{1}{2}mv^{2} + \frac{1}{4}mv^{2} = \frac{3}{4}mv^{2}$$

Divide by *m*:

$$gh = \frac{3}{4}v^2 \implies v = \left(\frac{4}{3}gh\right)^{1/2}$$

Numerical solution:

$$v = \left(\frac{4}{3}gh\right)^{1/2}$$
$$\approx \left(\frac{4}{3}\left(9.8\frac{m}{s^2}\right)(2m)\right)^{1/2}$$
$$= \left(\left(\frac{4}{3}\cdot 9.8\cdot 2\right)\left(\frac{m}{s^2}\cdot m\right)\right)^{1/2}$$
$$\approx \left(26.1\frac{m^2}{s^2}\right)^{1/2} \approx 5.11 \text{ m/s}$$

Analogous quantities

Linear/Translational	Angular/Rotational
Work $W = Fs$	Work $W = \tau \theta$
Kinetic energy $E_k = \frac{1}{2}mv^2$	Kinetic energy $E_k = \frac{1}{2}I\omega^2$

10.5 Angular Momentum and Its Conservation

Angular momentum

• Linear momentum *p* is defined as

 $p \equiv mv$

- Quiz: How can we define angular momentum (denoted *L*)?
- Answer: Since *I* is analogous to *m* and ω is analogous to *v*...

 $L = I\omega$

Example: Angular momentum of Earth

• Earth is a sphere, so (from the table):

$$I = \frac{2}{5}mr^2 \implies L = I\omega = \frac{2}{5}mr^2\omega$$

- $m \approx 5.98 \times 10^{24} \text{ kg}$
- $r \approx 6.38 \times 10^6$ m
- $\omega \approx 1$ revolution per day $\approx 2\pi \operatorname{rad}/(24 \times 60 \times 60 \operatorname{s}) \approx 7.27 \times 10^{-5} \operatorname{rad/s}$

$$L \approx \frac{2}{5} (5.98 \times 10^{24} \text{ kg}) (6.38 \times 10^6 \text{ m})^2 \left(7.27 \times 10^{-5} \frac{\text{rad}}{\text{s}} \right)$$
$$\approx 7.08 \times 10^{33} \text{ kg} \cdot \text{m}^2/\text{s}$$

Newton's 2nd law

• In linear motion, force is the change in momentum over time:

$$F = \frac{\Delta p}{\Delta t}$$

• Since p = mv, if the mass is constant we get the simpler form

$$F = m \frac{\Delta v}{\Delta t} = ma$$

- Quiz: What will be the analogous law for angular motion?
- Answer:

τ

$$=\frac{\Delta L}{\Delta t}$$
, and if *I* is constant: $\tau = I \frac{\Delta \omega}{\Delta t} = I \alpha$ as we found before!

Conservation of angular momentum

- We learned in chapter 8 that linear momentum is conserved.
 - To prove this, note that if F = 0 then

$$F = \frac{\Delta p}{\Delta t} \implies \Delta p = 0$$

So momentum never changes (it is conserved) unless a force is applied.

• Similarly, angular momentum is conserved if $\tau = 0$:

$$\tau = \frac{\Delta L}{\Delta t} \implies \Delta L = 0$$

Conservation of angular momentum

- This is why the Earth keeps spinning around itself and around the Sun!
- As long as no external torque is applied to it, its speed of rotation will never change.
 - There are actually some minor torques being applied, e.g. the gravity of the Moon, slowing down the Earth's rotation ≈ 65.7 ns/day!

- Another famous example is ice skating.
- The skater can keep spinning for a long time, because there is almost no friction.
- Also, by pulling her arms in, she can increase her angular speed.
- This is because the moment of inertia is proportional to r^2 .
- By decreasing *r* (pulling arms in), *I* also decreases.
- Since $L = I\omega$ is constant, if I decreases, ω must increase.

(n)

Video

• Here's a video demonstrating the use of angular momentum in ice skating:

https://youtu.be/FmnkQ2ytl08