PHYS 1P22/92

Prof. Barak Shoshany Spring 2024
10. Rotational Motion and Angular Momentum

10.1 Angular Acceleration

Reminder: Uniform circular motion

- Textbook chapter 6 (should review)
- Angle as function of time: $\theta(t)$
- Angular velocity:

$$
\omega \equiv \frac{\Delta \theta}{\Delta t} \quad\left(\text { really a derivative, } \omega \equiv \frac{\mathrm{d} \theta}{\mathrm{~d} t}\right. \text {) }
$$

- Relationship to linear velocity v and radius r :

$$
v=r \omega
$$

Angular acceleration

- Linear acceleration a : rate of change of linear velocity

$$
\begin{gathered}
a \equiv \frac{\Delta v}{\Delta t} \quad\left(\text { really a derivative, } a \equiv \frac{\mathrm{~d} v}{\mathrm{~d} t}\right) \\
\text { Units: velocity per second }=(\mathrm{m} / \mathrm{s}) / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}
\end{gathered}
$$

- Angular acceleration α (alpha): rate of change of angular velocity

$$
\begin{array}{ll}
\alpha \equiv \frac{\Delta \omega}{\Delta t} & \text { (really a derivative, } \alpha \equiv \frac{\mathrm{d} \omega}{\mathrm{~d} t} \text {) } \\
& \text { Units: rad } / \mathrm{s}^{2}
\end{array}
$$

How to solve a problem

- Always calculate the complete analytical expression first, and only plug in numbers in the end!
- Unit conversions cannot be part of the analytical expression, since they are part of the number.
- Separate the numerical calculation into pure numbers and pure units.
- Final answer should have the same number of significant figures as the least precise numerical quantity in the question.

Problem: A bicycle wheel is spinning from rest to 250 rpm in 5.00 s . Calculate the angular acceleration in rad/s ${ }^{2}$.

Analytical solution:

$$
\alpha=\frac{\Delta \omega}{\Delta t}=\frac{\omega_{2}-\omega_{1}}{\Delta t}
$$

Numerical solution: $\omega_{1}=0, \omega_{2}=250 \mathrm{rpm}, \Delta t=5 \mathrm{~s}$

$$
\alpha=\frac{\omega_{2}-\omega_{1}}{\Delta t} \approx \frac{(250-0) \mathrm{rpm}}{5 \mathrm{~s}}=\frac{250 \mathrm{rpm}}{5 \mathrm{~s}}
$$

Convert units:

$$
\begin{aligned}
& 1 \text { revolution }=2 \pi \text { radians, } \quad 1 \text { minute }=60 \text { seconds } \\
& \Rightarrow 1 \mathrm{rpm}=\text { revolutions per minute }=(2 \pi \mathrm{rad}) / 60 \mathrm{~s} \\
& \alpha=\frac{250 \cdot(2 \pi \mathrm{rad} / 60 \mathrm{~s})}{5 \mathrm{~s}}=\frac{250 \cdot 2 \pi}{60 \cdot 5} \cdot \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \approx 5.24 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Problem: If we slam on the brakes, causing an angular acceleration of $-87.3 \mathrm{rad} / \mathrm{s}^{2}$, how long does it take the wheel to stop?

Analytical solution:

$$
\alpha=\frac{\Delta \omega}{\Delta t} \Rightarrow \Delta t=\frac{\Delta \omega}{\alpha}=\frac{\omega_{2}-\omega_{1}}{\alpha}
$$

Numerical solution: $\omega_{1}=250 \mathrm{rpm}, \omega_{2}=0, \alpha=-87.3 \frac{\mathrm{rad}}{\mathrm{s}^{2}}$

$$
\begin{aligned}
\Delta t=\frac{\omega_{2}-\omega_{1}}{\alpha} & \approx \frac{(0-250) \mathrm{rpm}}{-87.3 \mathrm{rad} / \mathrm{s}^{2}}=\frac{-250 \cdot(2 \pi \mathrm{rad} / 60 \mathrm{~s})}{-87.3 \mathrm{rad} / \mathrm{s}^{2}} \\
& =\frac{-250 \cdot 2 \pi}{-87.3 \cdot 60} \cdot \frac{\mathrm{rad} \cdot \mathrm{~s}^{2}}{\mathrm{rad} \cdot \mathrm{~s}}=0.300 \mathrm{~s}
\end{aligned}
$$

Linear vs. angular acceleration

$$
\begin{gathered}
v=r \omega \\
a \equiv \frac{\Delta v}{\Delta t}, \quad \alpha \equiv \frac{\Delta \omega}{\Delta t}
\end{gathered}
$$

r is constant, so $\Delta r=0$:

$$
\begin{gathered}
\Delta v=\Delta(r \omega)=r \Delta \omega \\
a=\frac{\Delta v}{\Delta t}=r \frac{\Delta \omega}{\Delta t}=r \alpha \\
\Rightarrow a=r \alpha
\end{gathered}
$$

Problem: A powerful motorcycle can accelerate from 0 to $30.0 \mathrm{~m} / \mathrm{s}$ (about $108 \mathrm{~km} / \mathrm{h}$) in 4.20 s . What is the angular acceleration of its $0.320-\mathrm{m}$-radius wheels?
Analytical solution:

$$
\begin{gathered}
a=r \alpha \Rightarrow \alpha=\frac{a}{r} \\
a=\frac{\Delta v}{\Delta t} \Rightarrow \alpha=\frac{\Delta v / \Delta t}{r}=\frac{\Delta v}{r \Delta t}=\frac{v_{2}-v_{1}}{r \Delta t}
\end{gathered}
$$

Numerical solution:

$$
\alpha=\frac{v_{2}-v_{1}}{r \Delta t}=\frac{(30-0) \mathrm{m} / \mathrm{s}}{0.32 \mathrm{~m} \cdot 4.2 \mathrm{~s}}=22.3 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
$$

Radians are dimensionless (rad $\equiv 1$), no need to convert units!

Quick review of radians

- If x is the arc length and r is the radius, then the angle in radians is:

$$
\theta \equiv \frac{x}{r}
$$

$$
\theta=\frac{\text { arc length }}{\text { radius }}
$$

- Note: x and r both measured in meters, so in terms of units, $\mathrm{rad}=\mathrm{m} / \mathrm{m}=1$!
- 1 rad: if $x=r$.
- Full circle: $x=2 \pi r$ (circumference), so $\theta=2 \pi$.
- Angles are specified in radians by default. Degrees must be denoted explicitly with ${ }^{\circ}$.

Tangential vs. centripetal acceleration

- Tangential acceleration $a_{t}=r \alpha$: change in speed.
- Centripetal acceleration $a_{c}=v^{2} / r$: change in direction.
- Always perpendicular to each other.

Analogous quantities: linear vs. angular

Linear/Translational	Angular/Rotational	Relationship
Position x	Angle θ	$x=r \theta$
Velocity v	Angular velocity ω	$v=r \omega$
Acceleration a	Angular acceleration α	$a=r \alpha$

10.2 Kinematics of Rotational Motion

Velocity and acceleration

- Constant a, starting velocity v_{0} :

$$
v=v_{0}+a t
$$

- Since $v=r \omega$ and $a=r \alpha$:

$$
r \omega=r \omega_{0}+r \alpha t
$$

- Cancel r :

$$
\omega=\omega_{0}+\alpha t
$$

Note: Constant α.

Adding position / angle

- With position ($x_{0}=$ initial position, a still constant):

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

(Derived using calculus, by integrating $v=v_{0}+a t$. See chapter 2 for non-calculus derivation.)

- Angular version, using $x=r \theta$:

$$
\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

Equations without time

- Sometimes it's convenient to eliminate t from the equation:

$$
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
$$

(See chapter 2 for derivation)

- Angular version:

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
$$

Analogous equations: linear vs. angular

(Constant a and α)

$$
\begin{array}{c|c}
\hline \text { Linear/Translational } & \text { Angular/Rotational } \\
\hline v=v_{0}+a t & \omega=\omega_{0}+\alpha t \\
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} & \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) & \omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
\end{array}
$$

10.3 Dynamics of Rotational Motion: Rotational Inertia

Torque

- Recall from chapter 9 that torque τ is the angular analogue of force. In vector terms:

$$
\boldsymbol{\tau} \equiv \boldsymbol{r} \times \boldsymbol{F}, \quad \tau=|\boldsymbol{\tau}|=r F \sin \theta
$$

- In circular motion, the radius and force are perpendicular, so:

$$
\theta=\frac{\pi}{2} \Rightarrow \sin \theta=1 \Rightarrow \tau=r F
$$

Spinning a wheel

- Intuitively:
- More force = more acceleration
- More massive wheel = less acceleration
- Smaller radius (push closer to center) = less acceleration

Torque

- Newton's $2^{\text {nd }}$ law:

$$
F=m a
$$

- Since $a=r \alpha$:

$$
F=m r \alpha
$$

- Torque $\tau=r F$. Multiply both sides by r :

$$
F r=m r^{2} \alpha \quad \Rightarrow \quad \tau=m r^{2} \alpha
$$

- Define moment of inertia $I \equiv m r^{2}$:

$$
\tau=I \alpha
$$

Analogous quantities

Linear/Translational	Angular/Rotational
$2^{\text {nd }}$ law: $F=m a$	$2^{\text {nd }}$ law: $\tau=I \alpha$
Force F	Torque τ
Acceleration a	Angular acceleration α
Mass m	Moment of inertia $I \equiv m r^{2}$

Moment of inertia for non-point mass

- For a point mass, $I=m r^{2}$.
- For other objects, we sum over all the point masses, each with its own m and r^{2}.
- Without calculus: $I=\sum_{i} m_{i} r_{i}^{2}$, where i is an index enumerating all the masses. For example, for two masses $i=1,2$:

$$
I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}
$$

- With calculus: Using integrals (for continuous objects)

Hoop about cylinder axis
Axis

$$
I=\frac{M}{2}\left(R_{1}^{2}+R_{2}^{2}\right)
$$

Annular cylinder (or ring) about cylinder axis

Thin rod about axis through center \perp to length

Problem: A father pushing a playground merry-go-round exerts a force of 250 N at the edge of the $50.0-\mathrm{kg}$ merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced when no one is on the merry-go-round.

Merry-go-round

Analytical solution:

- Torque: $\tau=r F$
- Moment of inertia (from table): $I=\frac{1}{2} m r^{2}$
- Newton's $2^{\text {nd }}$ law:

$$
\tau=I \alpha \quad \Rightarrow \quad \alpha=\frac{\tau}{I}=\frac{r F}{\frac{1}{2} m r^{2}}=\frac{2 F}{m r}
$$

Problem: A father pushing a playground merry-go-round exerts a force of 250 N at the edge of the $50.0-\mathrm{kg}$ merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced when no one is on the merry-go-round.
Numerical solution:

$$
\begin{gathered}
\alpha=\frac{2 F}{m r} \approx \frac{2 \cdot 250 \mathrm{~N}}{50 \mathrm{~kg} \cdot 1.5 \mathrm{~m}}=\frac{2 \cdot 250}{50 \cdot 1.5} \frac{\mathrm{~N}}{\mathrm{~kg} \cdot \mathrm{~m}} \approx 6.67 \frac{\mathrm{~N}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
\text { Units: } \mathrm{N}=\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \Rightarrow \frac{\mathrm{~N}}{\mathrm{~kg} \cdot \mathrm{~m}}=\frac{1}{\mathrm{~kg} \cdot \mathrm{~m}} \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}=\frac{1}{\mathrm{~s}^{2}}=\frac{\mathrm{rad}}{\mathrm{~s}^{2}} \\
\quad \alpha \approx 6.67 \mathrm{rad} / \mathrm{s}^{2}
\end{gathered}
$$

Problem: Calculate the angular acceleration produced when an 18.0kg child sits 1.25 m away from the center.

Analytical solution: Add the two moments of inertial together (child
$=$ point mass):

$$
I_{\text {disk }}=\frac{1}{2} m_{\text {disk }} r_{\text {disk }}^{2}, \quad I_{\text {child }}=m_{\text {child }} r_{\text {child }}^{2}
$$

Therefore (r for the torque $=r_{\text {disk }}!$):

$$
\alpha=\frac{\tau}{I}=\frac{r_{\mathrm{disk}} F}{\frac{1}{2} m_{\mathrm{disk}} r_{\text {disk }}^{2}+m_{\text {child }} r_{\mathrm{child}}^{2}}
$$

Problem: Calculate the angular acceleration produced when an 18.0kg child sits 1.25 m away from the center.
Numerical solution:

$$
\begin{aligned}
& \alpha=\frac{r_{\text {disk }} F}{\frac{1}{2} m_{\text {disk }} r_{\text {disk }}^{2}+m_{\text {child }} r_{\text {child }}^{2}} \\
& =\frac{1.5 \mathrm{~m} \cdot 250 \mathrm{~N}}{\frac{1}{2}(50 \mathrm{~kg})(1.5 \mathrm{~m})^{2}+(18 \mathrm{~kg})(1.25 \mathrm{~m})^{2}} \\
& =4.44 \frac{\mathrm{~m} \cdot \mathrm{~N}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}} \\
& =4.44 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

10.4 Rotational Kinetic

 Energy: Work and EnergyRevisited

Reminder: work

- Definition of work W (chapter 7):

$$
W \equiv \boldsymbol{F} \cdot \boldsymbol{s}=F s \cos \theta
$$

$\boldsymbol{F}=$ force vector being applied $(F=|\boldsymbol{F}|)$
$\boldsymbol{s}=$ displacement vector $(s=|\boldsymbol{s}|)$

- = dot product of vectors
- Example: Applying a force of $F=1 \mathrm{~N}$ along a distance of $s=1 \mathrm{~m}$, with the force parallel to the distance $(\theta=0, \cos \theta=1)$, results in work of $W=1 \mathrm{~N} \cdot \mathrm{~m}$.

Rotational work

- Applying a force on the disk, parallel to the tangent, along an arc length s:

$$
W=F s
$$

- Torque is $\tau=r F$, so $F=\tau / r$. Arc length is $s=r \theta$:

$$
W=\frac{\tau}{r} \cdot r \theta=\tau \theta
$$

Therefore rotational work is $W=\tau \theta$.

Reminder: kinetic energy

- Equation of motion without time: $v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right)$
- Displacement: $\mathrm{s}=x-x_{0}$
- Rename v_{0} to v_{1} (initial velocity) and v to v_{2} (final velocity)

$$
v_{2}^{2}-v_{1}^{2}=2 a s \Rightarrow s=\frac{v_{2}^{2}-v_{1}^{2}}{2 a}
$$

- Plug into definition of work along with Newton's $2^{\text {nd }}$ law $F=m a$:

$$
W=F s=(m a)\left(\frac{v_{2}^{2}-v_{1}^{2}}{2 a}\right)=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}
$$

This is the work-energy theorem: work is the change in kinetic energy.

Note about notation...

- The textbook uses KE for the kinetic energy and PE for potential energy.
- This is a very confusing notation since it looks like K times E or P times E.
- In the lectures we will use the (standard) notation E_{k} for kinetic energy and E_{p} for potential energy.

Rotational kinetic energy

- From the work-energy theorem, linear kinetic energy for a particle moving at velocity v is $E_{k}=\frac{1}{2} m v^{2}$.
- As usual, there are angular analogues, which can be derived similarly:

$$
W=\frac{1}{2} I \omega_{2}^{2}-\frac{1}{2} I \omega_{1}^{2}, \quad E_{k}=\frac{1}{2} I \omega^{2}
$$

- Again, I is analogous to mass m and ω to linear velocity v.

Total kinetic energy

- Sometimes there is both linear and angular kinetic energy, for example for a rolling object.
- The total kinetic energy (linear + angular) is:

$$
E_{k}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}
$$

Problem: Calculate the final speed of a solid cylinder that rolls down a $2.00-\mathrm{m}$-high incline. The cylinder starts from rest, has a mass of 0.750 kg , and has a radius of 4.00 cm .

Analytical solution:

- The cylinder starts at rest, with only potential energy $E_{p}=m g h$.
- It ends at $h=0$, so with no potential energy.
- The potential energy was converted to linear + angular kinetic energy:

$$
m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}
$$

Analytical solution (cont.):

- The moment of inertia for a cylinder is $I=\frac{1}{2} m r^{2}$.
- We want to isolate the speed v. The angular velocity is $\omega=v / r$.

$$
\begin{aligned}
& m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{1}{2} m r^{2}\right)\left(\frac{v}{r}\right)^{2} \\
& =\frac{1}{2} m v^{2}+\frac{1}{4} m v^{2}=\frac{3}{4} m v^{2}
\end{aligned}
$$

Divide by m :

$$
g h=\frac{3}{4} v^{2} \Rightarrow v=\left(\frac{4}{3} g h\right)^{1 / 2}
$$

Numerical solution:

$$
\begin{aligned}
& v=\left(\frac{4}{3} g h\right)^{1 / 2} \\
& \approx\left(\frac{4}{3}\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(2 \mathrm{~m})\right)^{1 / 2} \\
& =\left(\left(\frac{4}{3} \cdot 9.8 \cdot 2\right)\left(\frac{\mathrm{m}}{\mathrm{~s}^{2}} \cdot \mathrm{~m}\right)\right)^{1 / 2} \\
& \approx\left(26.1 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right)^{1 / 2} \approx 5.11 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Analogous quantities

Linear/Translational

Work $W=F s$
Kinetic energy $E_{k}=\frac{1}{2} m v^{2}$

Angular/Rotational

Work $W=\tau \theta$

Kinetic energy $E_{k}=\frac{1}{2} I \omega^{2}$

10.5 Angular Momentum and Its Conservation

Angular momentum

- Linear momentum p is defined as

$$
p \equiv m v
$$

- Quiz: How can we define angular momentum (denoted L)?
- Answer: Since I is analogous to m and ω is analogous to v...

$$
L=I \omega
$$

Example: Angular momentum of Earth

- Earth is a sphere, so (from the table):

$$
I=\frac{2}{5} m r^{2} \quad \Rightarrow \quad L=I \omega=\frac{2}{5} m r^{2} \omega
$$

- $m \approx 5.98 \times 10^{24} \mathrm{~kg}$
- $r \approx 6.38 \times 10^{6} \mathrm{~m}$
- $\omega \approx 1$ revolution per day $\approx 2 \pi \mathrm{rad} /(24 \times 60 \times 60 \mathrm{~s}) \approx 7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s}$

$$
L \approx \frac{2}{5}\left(5.98 \times 10^{24} \mathrm{~kg}\right)\left(6.38 \times 10^{6} \mathrm{~m}\right)^{2}\left(7.27 \times 10^{-5} \frac{\mathrm{rad}}{\mathrm{~s}}\right)
$$

$$
\approx 7.08 \times 10^{33} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
$$

Newton's $2^{\text {nd }}$ law

- In linear motion, force is the change in momentum over time:

$$
F=\frac{\Delta p}{\Delta t}
$$

- Since $p=m v$, if the mass is constant we get the simpler form

$$
F=m \frac{\Delta v}{\Delta t}=m a
$$

- Quiz: What will be the analogous law for angular motion?
- Answer:

$$
\tau=\frac{\Delta L}{\Delta t}, \quad \text { and if } I \text { is constant: } \tau=I \frac{\Delta \omega}{\Delta t}=I \alpha \text { as we found before }!
$$

Conservation of angular momentum

- We learned in chapter 8 that linear momentum is conserved.
- To prove this, note that if $F=0$ then

$$
F=\frac{\Delta p}{\Delta t} \Rightarrow \Delta p=0
$$

So momentum never changes (it is conserved) unless a force is applied.

- Similarly, angular momentum is conserved if $\tau=0$:

$$
\tau=\frac{\Delta L}{\Delta t} \Rightarrow \Delta L=0
$$

Conservation of angular momentum

- This is why the Earth keeps spinning around itself and around the Sun!
- As long as no external torque is applied to it, its speed of rotation will never change.
- There are actually some minor torques being applied, e.g. the gravity of the Moon, slowing down the Earth's rotation $\approx 65.7 \mathrm{~ns} /$ day!
- Another famous example is ice skating.
- The skater can keep spinning for a long time, because there is almost no friction.
- Also, by pulling her arms in, she can increase her angular speed.
- This is because the moment of inertia is proportional to r^{2}.
- By decreasing r (pulling arms in), I also decreases.
- Since $L=I \omega$ is constant, if I decreases,
 ω must increase.

Video

- Here's a video demonstrating the use of angular momentum in ice skating:

https://youtu.be/FmnkQ2ytl08

