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12. Fluid Dynamics



12.1 Flow Rate and Its 

Relation to Velocity



• The (volumetric) flow rate 𝑄 is the volume of fluid passing through a 
surface per unit time:

𝑄 ≡
Δ𝑉

Δ𝑡
, or just 𝑄 ≡

𝑉

𝑡

• If 𝐴 is the cross-sectional area and a length 𝑑 of fluid passes through in time 
𝑡 then

𝑉 = 𝐴𝑑 ⟹ 𝑄 =
𝑉

𝑡
=

𝐴𝑑

𝑡

• Let ҧ𝑣 ≡ 𝑑/𝑡 be the average fluid velocity, then:
𝑄 = 𝐴 ҧ𝑣



• Consider an incompressible fluid flowing through a pipe with flow rate 𝑄.

• Pop Quiz: Given 𝑄 = 𝐴 ҧ𝑣, what happens when the cross-sectional area 

decreases?

• Answer: Since the flow rate 𝑄 must be constant:

𝑄1 = 𝑄2 ⟹ 𝐴1 ҧ𝑣1 = 𝐴2 ҧ𝑣2

• This is called the continuity equation. If 𝐴 decreases then ҧ𝑣 must increase, 

and vice versa.

• Example: Flow through a nozzle.



• Problem: A nozzle with radius 𝑟2 is attached to a garden hose with radius 

𝑟1 > 𝑟2. The flow rate is 𝑄. Calculate the speed of the water in the hose and 

nozzle.

• Solution: We have 𝐴1 = 𝜋𝑟1
2 and 𝐴2 = 𝜋𝑟2

2. Then

𝑄 = 𝐴1 ҧ𝑣1 ⟹ ҧ𝑣1 =
𝑄

𝐴1
=

𝑄

𝜋𝑟1
2

𝐴1 ҧ𝑣1 = 𝐴2 ҧ𝑣2 ⟹ ҧ𝑣2 =
𝐴1

𝐴2
ҧ𝑣1 =

𝜋𝑟1
2

𝜋𝑟2
2

𝑄

𝜋𝑟1
2 =

𝑄

𝜋𝑟2
2



• Problem: Calculate the speeds if 𝑟2 ≈ 0.250 cm, 𝑟1 ≈ 0.900 cm, and 𝑄 ≈

0.500 L/s.

• Solution: 1 L = 10−3 m3, 1 cm = 10−2 m, so:

ҧ𝑣1 =
𝑄

𝜋𝑟1
2 ≈

0.5 L/s

𝜋 0.9 cm 2
=

0.5 × 10−3 m3/s

𝜋 0.9 × 10−2 m 2
=

0.5 × 10−3

𝜋 ⋅ 0.9 × 10−2 2

m3/s

m2

≈ 1.96 m/s

ҧ𝑣2 =
𝑄

𝜋𝑟2
2 ≈ ⋯ =

0.5 × 10−3

𝜋 ⋅ 0.25 × 10−2 2

m3/s

m2
≈ 25.5 m/s



Speed vs. radius

• This is a general result: speed is inversely proportional to the 

square of the radius.

𝑣 ∝
1

𝑟2

• Example: Blowing a candle with open mouth vs. pursed lips.



Branching flow

• Sometimes the flow branches, e.g.: 

cardiovascular system.

• In this case, the continuity equation 

𝐴1 ҧ𝑣1 = 𝐴2 ҧ𝑣2 applies for the sum of the 

flow rates:

𝑛1𝐴1 ҧ𝑣1 = 𝑛2𝐴2 ҧ𝑣2

• 𝑛1 and 𝑛2 are the number of branches 

on sides 1 and 2.



Problem: Blood flows through the large aorta and smaller capillaries. When 

the aorta flow rate is 𝑄1 ≈ 5.0 L/min, the speed of blood in the capillaries is 

ҧ𝑣2 ≈ 0.33 mm/s. If the average diameter of a capillary is 𝐷2 ≈ 8.0 μm, 

calculate the number of capillaries in the blood circulatory system.

Solution: 𝑛1 = 1 (only one aorta). From 𝑛1𝐴1 ҧ𝑣1 = 𝑛2𝐴2 ҧ𝑣2 and 𝑄1 = 𝐴1 ҧ𝑣1:

𝑛2 =
𝑛1(𝐴1 ҧ𝑣1)

𝐴2 ҧ𝑣2
=

𝑛1𝑄1

𝐴2 ҧ𝑣2
≈

(1) ⋅ (5.0 L/min)

𝜋 ⋅ 0.5 ⋅ 8.0 μm 2 ⋅ 0.33 mm/s

=
(5 × 10−3 m3/60 s)

𝜋 ⋅ 0.5 ⋅ 8.0 × 10−6 m 2 ⋅ 0.33 × 10−3 m/s

=
5 × 10−3/60

𝜋 ⋅ 0.5 ⋅ 8.0 × 10−6 2 ⋅ 0.33 × 10−3

m3/s

m2 ⋅ m/s
≈ 5.0 × 109



12.2 Bernoulli’s 

Equation



Fluid and energy

• We saw that if 𝐴 decreases, ҧ𝑣 increases. Where does the extra 
kinetic energy come from?

• Energy is conserved:

𝐸kinetic + 𝐸potential = constant

• If kinetic energy increases, potential energy must decrease.

• Pressure contributes to potential energy through work:
𝑊 = 𝐹𝑥 = 𝑃𝐴𝑥

• So pressure must decrease if velocity increases.



• Examples:

• Shower curtain moves into shower. 

High-velocity stream inside shower 

creates lower pressure.

• Car driving next to a truck is pulled 

toward it.



Bernoulli’s equation

• An incompressible, frictionless fluid with pressure 𝑃, density 𝜌, and velocity 
𝑣, at height ℎ, satisfies:

𝑃 +
1

2
𝜌𝑣2 + 𝜌𝑔ℎ = constant

• This is actually just conservation of energy per unit volume:

𝜌 ≡
𝑚

𝑉
⟹ 𝑃𝑉 +

1

2
𝑚𝑣2 + 𝑚𝑔ℎ = 𝑉(𝑃 +

1

2
𝜌𝑣2 + 𝜌𝑔ℎ)

•
1

2
𝑚𝑣2 is kinetic energy, 𝑚𝑔ℎ is gravitational potential energy, and

𝑉

𝐴
= 𝑥 ⟹ 𝑃𝑉 =

𝐹

𝐴
𝑉 = 𝐹𝑥 = 𝑊



Bernoulli’s equation

• If we take a “snapshot” of the LHS at two points 1 and 2, we have:

𝑃1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔ℎ1 = 𝑃2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔ℎ2

• Can be used to find quantities at 2 based on quantities at 1.

• Can rewrite in terms of differences:

𝑃2 − 𝑃1 +
1

2
𝜌 𝑣2

2 − 𝑣1
2 + 𝜌𝑔(ℎ2 − ℎ1) = 0

• Sometimes one of the 3 terms vanishes. Let’s see some examples.



Static fluid

• Start from 𝑃 +
1

2
𝜌𝑣2 + 𝜌𝑔ℎ = constant

• For a static fluid 𝑣 = 0, so:

𝑃 + 𝜌𝑔ℎ = constant

or 𝑃1 + 𝜌𝑔ℎ1 = 𝑃2 + 𝜌𝑔ℎ2

or 𝑃1 − 𝑃2 = 𝜌𝑔 ℎ2 − ℎ1

• If 𝑃2 = 0 and ℎ2 − ℎ1 = ℎ we get the 

formula 𝑃 = 𝜌𝑔ℎ from ch. 11.

ℎ1

ℎ2



Constant depth

• Start from

𝑃1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔ℎ1 = 𝑃2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔ℎ2

• At constant depth ℎ1 = ℎ2, so terms cancel:

𝑃1 +
1

2
𝜌𝑣1

2 = 𝑃2 +
1

2
𝜌𝑣2

2

or 𝑃 +
1

2
𝜌𝑣2 = constant

• We see that if 𝑣 increases, 𝑃 must decrease, or 
vice versa.

ℎ1ℎ2



• Air flows faster over the upper surface of a plane’s wing, causing lower 

pressure and a net upward force or lift.
Warning! There is a common misconception that the speed difference is because the upper surface 

is longer. That is incorrect. The real reason is complicated and we won’t cover it here.

• Sails work the same, except horizontally.



• A manometer can be used to measure velocity.

• The air entering tube 1 has nowhere to go, so it has speed 𝑣1 = 0.

• The air at tube 2 just passes by with speed 𝑣2 > 0, therefore lower pressure.

• From Bernoulli’s equation: 𝑃1 − 𝑃2 =
1

2
𝜌𝑣2

2

• The pressure difference pushes the fluid up a height ℎ ∝
1

2
𝜌𝑣2

2, so 𝑣2 ∝
2ℎ

𝜌
.



12.3 The Most General 

Applications of Bernoulli’s 

Equation



• Consider water flowing from the bottom of a 
dam. Apply Bernoulli’s equation:

𝑃2 − 𝑃1 +
1

2
𝜌 𝑣2

2 − 𝑣1
2 + 𝜌𝑔(ℎ2 − ℎ1) = 0

• 𝑃1 = 𝑃2 because both must be atmospheric 
pressure (the fluid is out in the atmosphere, 
not inside a container):

1

2
𝜌 𝑣2

2 − 𝑣1
2 + 𝜌𝑔(ℎ2 − ℎ1) = 0

• Note that 𝜌 cancels. Define ℎ ≡ ℎ1 − ℎ2 and 
solve for 𝑣2:

𝑣2
2 = 𝑣1

2 + 2𝑔ℎ

• This is simply a kinematic equation for any 
object falling a distance ℎ. In fluids, it is 
called Torricelli’s theorem.



• Recall that power is energy (or work) per unit time:

ത𝑃 ≡
Δ𝐸

Δ𝑡
• Both power and pressure are denoted 𝑃, don’t confuse them! I’ll use ത𝑃 for power to 

avoid confusion, but it’s not standard notation.

• In Bernoulli’s equation, the terms are actually energy per unit volume:

𝑃 +
1

2
𝜌𝑣2 + 𝜌𝑔ℎ =

1

𝑉
𝑃𝑉 +

1

2
𝑚𝑣2 + 𝑚𝑔ℎ =

𝐸

𝑉
= constant

• Flow rate is 𝑄 ≡ 𝑉/𝑡, so:

ത𝑃 =
𝐸

𝑡
=

𝐸

𝑉

𝑉

𝑡
= 𝑃 +

1

2
𝜌𝑣2 + 𝜌𝑔ℎ 𝑄

• In other words: multiply Bernoulli’s equation by 𝑄 to get the power.


	Slide 1: PHYS 1P22/92 Prof. Barak Shoshany Spring 2024
	Slide 2: 12.1 Flow Rate and Its Relation to Velocity
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Speed vs. radius
	Slide 8: Branching flow
	Slide 9
	Slide 10: 12.2 Bernoulli’s Equation
	Slide 11: Fluid and energy
	Slide 12
	Slide 13: Bernoulli’s equation
	Slide 14: Bernoulli’s equation
	Slide 15: Static fluid
	Slide 16: Constant depth
	Slide 17
	Slide 18
	Slide 19: 12.3 The Most General Applications of Bernoulli’s Equation
	Slide 20
	Slide 21

