PHYS 1P22/92

Prof. Barak Shoshany Spring 2024
13. Temperature, Kinetic Theory, and the Gas Laws
13.1 Temperature

Temperature scales and units

- The Celsius scale: Defined by setting the freezing point of water at $0^{\circ} \mathrm{C}$ and boiling point at $100^{\circ} \mathrm{C}$, at 1 atm (atmospheric pressure).
- The Kelvin scale: Starts from $0 \mathrm{~K} \equiv-273.15^{\circ} \mathrm{C}$, absolute zero, the coldest possible temperature.
- Celsius is defined in terms of kelvin. Precise definition, not approximation.
- Notation:
- Just K, no ${ }^{\circ}$ symbol.
- Just "kelvin" or "kelvins", not "degrees kelvin".
- Unit name (kelvin) not capitalized. (Like newton, pascal, etc.)

Temperature scales and units

- Kelvin is always positive; nothing can be colder than 0 K , or even exactly 0 K . Celsius can be positive or negative, down to $0 \mathrm{~K} \equiv$ $-273.15^{\circ} \mathrm{C}$.
- To convert: kelvin $=$ Celsius +273.15 , Celsius $=$ kelvin -273.15 .
- Example: "Room temperature" usually means $25^{\circ} \mathrm{C}$. This is $273.15+25=298.15 \mathrm{~K}$.
- The Fahrenheit scale: Used only in the US and Liberia. Useless for doing science. We won't use it in this course.

Temperature examples (logarithmic scale)

Thermal equilibrium

- Two systems are in thermal contact if heat can transfer between them.
- Any two systems in thermal contact and isolated from the environment will reach the same temperature.
- We say they reached thermal equilibrium, and no further heat flow or temperature changes will occur.
- That's how a thermometer works: it reaches thermal equilibrium with an object and then measures its own temperature.
- A single object is in internal thermal equilibrium if no heat is flowing within it - its temperature is uniform.

Zeroth law of thermodynamics

- The zeroth law of thermodynamics: If systems A and B are in thermal equilibrium, and B is in thermal equilibrium with system C , then A is also in thermal equilibrium with C .
- In other words: Thermal equilibrium is transitive.
- This law may seem obvious, but it is required to justify the use of thermometers: If two thermometers touch the same object, then they must read the same temperature.
- We will learn more laws of thermodynamics in chapter 15.

When to use Celsius vs. kelvin

- Given two temperatures T_{1} and T_{2} expressed in Celsius, the difference is

$$
\Delta T=T_{2}-T_{1}
$$

- But if we convert to kelvins first, the 273.15 cancels and we get

$$
\left(T_{2}+273.15\right)-\left(T_{1}+273.15\right)=T_{2}-T_{1}=\Delta T
$$

- So for a temperature difference ΔT, either Celsius or kelvins can be used.
- However, temperature difference is the only time degrees Celsius are valid. In all other cases, kelvins must be used.
- If unsure, use kelvins, because they can be used in any situation, both for temperature difference and for absolute temperature.

13.2 Thermal Expansion of Solids and Liquids

- Materials generally expand when heated and contract when cooled.
- A thermometer works by measuring how much a substance (e.g. mercury or alcohol) expands.
- The container (glass, plastic) also expands, but much less.
- Hot air rises because it expands, so its density decreases compared to the surrounding air.
- Structures such as railroad tracks and bridges must have expansion joints to allow for expansion and contraction.

Linear (1D) thermal expansion

- The change in length ΔL of a material is

$$
\Delta L=\alpha L \Delta T
$$

- L is the original length.
- ΔT is the change in temperature.
- α is the coefficient of linear expansion for the specific material at the appropriate temperature. Measured in K^{-1} (inverse kelvin) or equivalently $\left({ }^{\circ} \mathrm{C}\right)^{-1}$.
- This equation only works if:
- ΔT is small enough that α doesn't change much (since it depends on T).
- The fractional change in length $\Delta L / L$ is small.
- If these conditions do not hold, we must use calculus.

Area (2D) thermal expansion

- The change in area ΔA of a material is

$$
\Delta A=2 \alpha A \Delta T
$$

- A is the original area.
- ΔT is the change in temperature.
- α is the coefficient of linear expansion.
- As in 1D, this equation only works if ΔT and $\Delta A / A$ are small.

Volume (3D) thermal expansion

- The change in volume ΔV of a material is

$$
\Delta V=\beta V \Delta T
$$

- V is the original area.
- ΔT is the change in temperature.
- β is the coefficient of volume expansion. Usually $\beta \approx 3 \alpha$.
- This equation only works if ΔT and $\Delta V / V$ are small.
- Some examples of how rigid objects expand (solid: original, dashed: after expansion):
- Left: The area increases due to expansion in both directions.
- Center: The hole in the center expands as if it was filled.
- Right: The volume increases due to expansion in all 3 directions.

Approximate thermal expansion coefficients of solids at $20^{\circ} \mathrm{C}$

Material	$\alpha\left(\times \mathbf{1 0}^{-6} \mathbf{K}^{-1}\right)$	$\beta\left(\times 10^{-6} \mathrm{~K}^{-1}\right)$
Aluminum	25	75
Brass	19	56
Copper	17	51
Gold	14	42
Iron or Steel	12	35
Invar (Nickel-iron alloy)	0.9	2.7
Lead	29	87
Silver	18	54
Glass (ordinary)	9	27
Glass (Pyrex)	3	9
Quartz	0.4	1
Concrete, Brick	12	36
Marble (average)	7	21

Approximate volumetric thermal expansion coefficients of liquids at $20^{\circ} \mathrm{C}$

Material	$\boldsymbol{\beta}\left(\times \mathbf{1 0}^{-6} \mathbf{K}^{\mathbf{- 1}}\right)$
Ether	1650
Ethyl alcohol	1100
Petrol	950
Glycerin	500
Mercury	180
Water	210

For air and most other gases
at atmospheric pressure:
$\beta \approx 3400 \times 10^{-6} \mathrm{~K}^{-1}$

- Class problem: The main span of San Francisco's Golden Gate Bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from $-15^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. What is its change in length between these temperatures? Assume that the bridge is made entirely of steel ($\alpha \approx 12 \times 10^{-6} \mathrm{~K}$).
- Solution:

$$
\begin{aligned}
& \Delta L=\alpha L \Delta T \approx\left(12 \times 10^{-6} \mathrm{~K}^{-1}\right)(1275 \mathrm{~m})((40-(-15)) \mathrm{K}) \\
& =12 \times 10^{-6} \cdot 1275 \cdot(40-(-15)) \mathrm{K}^{-1} \cdot \mathrm{~m} \cdot \mathrm{~K} \\
& \approx 0.84 \mathrm{~m}
\end{aligned}
$$

- This is a significant change; it is spread over many expansion joints.
- Water is an important exception. Above $4^{\circ} \mathrm{C}$ it expands as temperature increases, but between $0{ }^{\circ} \mathrm{C}$ and $4{ }^{\circ} \mathrm{C}$ it contracts as temperature increases.
- Pop Quiz: How can the surface of a pond freeze while the water below stays liquid at $4{ }^{\circ} \mathrm{C}$?
- Answer: Because liquid at
 $4^{\circ} \mathrm{C}$ has a larger density than ice at $0^{\circ} \mathrm{C}$, so it sinks.
- Class problem: A steel gasoline tank of volume V is full of gas. Both the tank and the gasoline have a temperature of T_{1}. How much gasoline has spilled by the time they warm to T_{2} ?
- Solution: Both the gasoline and the tank itself expand from volume V :

$$
\Delta V_{s}=\beta_{s} V \Delta T, \quad \Delta V_{g}=\beta_{g} V \Delta T
$$

The gasoline is spilled because it expanded more than the steel. The total amount spilled is:

$$
\begin{aligned}
V_{\text {spilled }} & =\Delta V_{g}-\Delta V_{s} \\
& =\beta_{g} V \Delta T-\beta_{s} V \Delta T \\
& =\left(\beta_{g}-\beta_{s}\right) V \Delta T
\end{aligned}
$$

- Problem: Calculate $V_{\text {spilled }}$ if $V \approx 60.0 \mathrm{~L}, T_{1} \approx 15.0^{\circ} \mathrm{C}, T_{2} \approx 35.0^{\circ} \mathrm{C}$, $\beta_{s} \approx 35.0 \times 10^{-6} \mathrm{~K}^{-1}, \beta_{g} \approx 950 \times 10^{-6} \mathrm{~K}^{-1}$. Do a sanity check on units and numerical value.
- Solution:

$$
\begin{aligned}
V_{\text {spilled }} & =\left(\beta_{g}-\beta_{s}\right) V \Delta T \\
& \approx(950-35) \times 10^{-6} \mathrm{~K}^{-1} \cdot 60 \times 10^{-3} \mathrm{~m}^{3} \cdot(35-15) \mathrm{K} \\
& =915 \times 10^{-6} \cdot 60 \times 10^{-3} \cdot 20 \mathrm{~m}^{3} \\
& \approx 1.10 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

- Sanity check:
- Units are correct for volume.
- Amount spilled is around 1 L , which is less than the total of 60 L . It seems a bit too large, but the gasoline does expand 915/35 ≈ 26 times faster than the steel.
- If the tank is sealed, it will burst (both liquids and solids are incompressible). Tanks usually have air gaps to prevent this.

13.3 The Ideal Gas Law

Ideal gas

- Particles (atoms and/or molecules) in a gas are very far apart and interact only weakly.
- In an ideal gas, the particles do not interact at all (but they can collide elastically).
- Many real gasses behave like ideal gases under certain conditions, for example air at room temperature.

The ideal gas law

- An ideal gas satisfies an equation of state called the ideal gas law:

$$
P V=N k_{B} T
$$

- P is the absolute pressure ($0=$ no pressure; do not use gauge pressure!)
- V is the volume.
- N is the number of particles.
- T is the absolute temperature ($0=$ absolute zero; do not use Celsius!).
- $k_{B} \equiv 1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ is the Boltzmann constant (exact definition).
- In terms of SI base units: $\frac{J}{K}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{~K}}=\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}$
- Problem: A bicycle tire is fully inflated, with absolute pressure P_{1} at temperature T_{1}. What is the pressure P_{2} after its temperature has risen to $T_{2}>T_{1}$? Assume that there are no appreciable leaks or changes in volume.
- Solution: N is constant (no leaks) and V is constant. Initially we have

$$
P_{1} V=N k_{B} T_{1}
$$

In the end we have

$$
P_{2} V=N k_{B} T_{2}
$$

Divide the two equations and solve for P_{2} :

$$
\frac{P_{2}}{P_{1}}=\frac{T_{2}}{T_{1}} \Rightarrow P_{2}=P_{1} \frac{T_{2}}{T_{1}}
$$

- Problem: Calculate P_{2} if $P_{1}=7.00 \times 10^{5} \mathrm{~Pa}, T_{1}=18.0^{\circ} \mathrm{C}, T_{2}=35.0^{\circ} \mathrm{C}$.
- Solution: We must convert the temperatures to kelvins. The ideal gas law only makes sense with an absolute temperature scale, which starts from 0 at absolute zero. Recall that

$$
\text { kelvin }=\text { Celsius }+273.15
$$

So we get:

$$
\begin{aligned}
& P_{2}=P_{1} \frac{T_{2}}{T_{1}} \\
& \approx\left(7.00 \times 10^{5} \mathrm{~Pa}\right) \frac{(35.0+273.15) \mathrm{K}}{(18.0+273.15) \mathrm{K}} \\
& \approx 7.41 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

- Class problem: Use the ideal gas law $P V=N k_{B} T$ to calculate the number of molecules in $1.0000 \mathrm{~m}^{3}$ of air at temperature $0^{\circ} \mathrm{C}$ and atmospheric pressure $P_{\text {atm }} \equiv 101,325 \mathrm{~Pa}$.
- Recall that $k_{B} \equiv 1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ and kelvin $=$ Celsius +273.15 .
- Solution:

$$
\begin{aligned}
& N=\frac{P V}{k_{B} T}=\frac{(101,325 \mathrm{~Pa})\left(1 \mathrm{~m}^{3}\right)}{\left(1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(273.15 \mathrm{~K})} \\
& =\frac{101,325}{1.380649 \times 10^{-23} \cdot 273.15} \frac{\mathrm{~Pa} \cdot \mathrm{~m}^{3}}{\mathrm{~J}} \\
& \approx 2.6868 \times 10^{25}
\end{aligned}
$$

Unit calculation: $\mathrm{Pa}=\mathrm{kg} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-2}$ and $\mathrm{J}=\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$, so :

$$
\frac{\mathrm{Pa} \cdot \mathrm{~m}^{3}}{\mathrm{~J}}=\frac{\mathrm{kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}}=1(\text { pure number })
$$

Moles and Avogadro's constant

- A mole (or mol) is the amount of a substance that contains as many particles as there are atoms in 12 grams of carbon- 12 .
- The number of particles in a mole is Avogadro's constant N_{A} :

$$
N_{A} \equiv 6.02214076 \times 10^{23} \mathrm{~mol}^{-1} \quad \text { (Note: exact definition) }
$$

- Avogadro's number (sometimes denoted N_{0}) is the numerical value of Avogadro's constant (i.e. without the units of inverse moles). So $N_{A} \equiv$ $N_{0} \mathrm{~mol}^{-1}$.

Note: Moles and Avogadro's constant are not really necessary to do science. They are used to count things, but we could just express the number of particles as a pure number without units, and it would be much less confusing. However, they are used for historical reasons.

Molar mass

- The molar mass of a substance is the ratio between its mass (in grams) and the amount of substance (in moles). Units: $\mathrm{g} / \mathrm{mol}$.
- In other words, a mole of a substance has a mass in grams equal to its molar mass.
- Molar mass is the same as atomic mass (the mass of a single atom) but expressed in g/mol...
- The atomic masses of elements are given in the periodic table, and in Appendix A of the textbook.
- Example: The molar mass of carbon-12 is $12 \mathrm{~g} / \mathrm{mol}$.

The ideal gas law in terms of moles

- If a substance contains N particles, then it has $n \equiv N / N_{A}$ moles.
- Since $N=n N_{A}$, we can rewrite the ideal gas law:

$$
P V=N k_{B} T=n N_{A} k_{B} T
$$

- If we define the universal gas constant $R \equiv N_{A} k_{B}$, we obtain the ideal gas law in terms of moles:

$$
P V=n R T
$$

- We won't use this, or moles and Avogadro's constant in general, in our course. But you might see it elsewhere.
13.4 Kinetic Theory:

Atomic and Molecular
Explanation of Pressure
and Temperature

- Consider a gas in a cubic box of size L.
- The gas particles collide with the walls of the box in the x direction with speed v_{x}.
- We assume for simplicity that the speed is $-v_{x}$ after the collision.
- The change in speed is $\Delta v_{x}=v_{x}-\left(-v_{x}\right)=2 v_{x}$, so the change in momentum is $\Delta p=m \Delta v_{x}=2 m v_{x}$. The force is

$$
F=\frac{\Delta p}{\Delta t}=\frac{2 m v_{x}}{\Delta t}
$$

- Between collisions, the particle will bounce across the box and back. That's a distance $2 L$ at speed v_{x}, so

$$
\Delta t=\frac{2 L}{v_{x}}
$$

- We plug $\Delta t=2 L / v_{x}$ into the force:

$$
F=\frac{2 m v_{x}}{\Delta t}=\frac{2 m v_{x}}{2 L / v_{x}}=\frac{m v_{x}^{2}}{L} \Rightarrow L F=m v_{x}^{2}
$$

- Now consider N particles moving in random directions. The average speed in all directions is identical (from symmetry, no direction is "special"):

$$
v=v_{x}=v_{y}=v_{z}
$$

- Summing vector components for the velocity, we have

$$
|\mathbf{v}|^{2}=v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}=3 v_{x}^{2} \Rightarrow v_{x}^{2}=\frac{v^{2}}{3}
$$

- The pressure exerted by collisions from all N particles is $\left(A=L^{2}, V=L^{3}\right)$:

$$
P=\frac{N F}{A}=\frac{N F}{L^{2}} \Rightarrow P V=N L F=N m v_{x}^{2}=\frac{1}{3} N m v^{2}
$$

- The kinetic energy of the particle is

$$
E_{k}=\frac{1}{2} m v^{2} \Rightarrow m v^{2}=2 E_{k}
$$

- So we get

$$
P V=\frac{1}{3} N m v^{2}=\frac{2}{3} N E_{k}
$$

- On the other hand, from the ideal gas law $P V=N k_{B} T$:

$$
N k_{B} T=\frac{2}{3} N E_{k} \quad \Rightarrow \quad E_{k}=\frac{1}{2} m v^{2}=\frac{3}{2} k_{B} T
$$

- We get a microscopic definition of temperature: it is proportional to the average (translational) kinetic energy of the particles.

$$
T=\frac{2}{3 k_{B}} E_{k}
$$

- Equivalently, temperature is related to the average speed of the particles:

$$
T=\frac{m v^{2}}{3 k_{B}} \Rightarrow v_{\mathrm{rms}} \equiv \sqrt{\overline{v^{2}}}=\sqrt{\frac{3 k_{B} T}{m}}
$$

- $v_{\text {rms }}$ is the root-mean-square speed: the square root of the mean (average) square speed of all the particles.
- In a hotter gas, each particle will have more kinetic energy and will move at faster average speed.
- Class problem: What is the average kinetic energy of a gas molecule at $20.0^{\circ} \mathrm{C}$?
- Use $k_{B} \equiv 1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ and kelvin $=$ Celsius +273.15 .
- Solution:

$$
E_{k}=\frac{3}{2} k_{B} T \approx \frac{3}{2}\left(1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(20+273.15) \mathrm{K} \approx 6.07 \times 10^{-21} \mathrm{~J}
$$

- Class problem: If the gas is composed of nitrogen molecules $\left(\mathrm{N}_{2}\right)$, what is the rms speed of a gas molecule at $20.0^{\circ} \mathrm{C}$?
- Use $k_{B} \equiv 1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ and kelvin $=$ Celsius +273.15 .
- The mass of a nitrogen atom (N) is $2.3259 \times 10^{-26} \mathrm{~kg}$.
- Solution: (mass of N_{2} is $2 m$)

$$
\begin{aligned}
& v_{\mathrm{rms}}=\sqrt{\frac{3 k_{B} T}{2 m}} \approx \sqrt{\frac{3\left(1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(20+273.15) \mathrm{K}}{2\left(2.3259 \times 10^{-26} \mathrm{~kg}\right)}} \\
& =\sqrt{\frac{3\left(1.380649 \times 10^{-23}\right)(20+273.15)}{2\left(2.3259 \times 10^{-26}\right)}} \sqrt{\frac{\mathrm{J}}{\mathrm{~kg}}} \\
& \approx 511 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Unit conversion: $\mathrm{J}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$, so $\sqrt{\mathrm{J} / \mathrm{kg}}=\mathrm{m} / \mathrm{s}$.

- The probability distribution of speeds for particles a gas is given by the Maxwell-Boltzmann distribution.
- Note that the most probable speed v_{p} is less than $v_{\text {rms }}$.

- As temperature increases, the speeds are shifted to higher values and the distribution is broadened.

Simulation

- Simulation for an ideal gas:
https://phet.colorado.edu/sims/html/gas-properties/latest/gasproperties all.html

13.5 Phase Changes

- As a gas is cooled, it condenses to a liquid.
- There is a sudden drop in volume.
- Cooled even more, it freezes to a solid.
- The volume keeps decreasing, but doesn't reach zero because the molecules have a non-zero size.
- Recall the ideal gas law:

$$
P V=N k_{B} T
$$

- If N and T are fixed, then $P V$ is constant.
- So if P increases, V decreases, and vice versa.
- Calling the constant $c \equiv N k_{B} T$, we can write

$$
P V=c \quad \Rightarrow \quad P=\frac{c}{V}
$$

- The function has the shape of a hyperbola.
- Plotting this function for different values of c gives a $P V$ diagram.

$\cdot c \equiv N k_{B} T$ depends on temperature.
- So there is a different hyperbola for each T.
- Such a hyperbola is called an isotherm.
- At lower temperatures, the graphs look less like hyperbolas.
- The gas is not an ideal gas anymore, so $P V=c$ doesn't apply.
- It can even be a liquid at this point.

- There is a critical point or critical temperature T_{c} above which liquid cannot exist.
- At high pressure above the critical point, the gas will have the density of a liquid but will not condense.
- E.g.: CO_{2} cannot be liquefied above $\approx 31.0^{\circ} \mathrm{C}$.
- Critical pressure is the minimum pressure needed for liquid to exist at the critical temperature.
- Vapor is the gas phase when it exists at a temperature below the critical temperature.

Substance	Critical temperature		Critical pressure	
	K	${ }^{\circ} \mathrm{C}$	$\times 10^{6} \mathrm{~Pa}$	atm
Water	647.4	374.3	22.12	219.0
Sulfur dioxide	430.7	157.6	7.88	78.0
Ammonia	405.5	132.4	11.28	111.7
Carbon dioxide	304.2	31.1	7.39	73.2
Oxygen	154.8	-118.4	5.08	50.3
Nitrogen	126.2	-146.9	3.39	33.6
Hydrogen	33.3	-239.9	1.30	12.9
Helium	5.3	-267.9	0.229	2.27

- A phase diagram is $P T$ diagram.
- The solid lines are boundaries between phases. Phases coexist on the lines.
- At the triple point, where the lines meet, all three phases exist in equilibrium.

Substance	Triple point temperature		Triple point pressure	
	K	${ }^{\circ} \mathrm{C}$	Pa	atm
Water	273.16	0.01	6.10×10^{2}	0.00600
Carbon dioxide	216.55	-56.60	5.16×10^{5}	5.11
Sulfur dioxide	197.68	-75.47	1.67×10^{3}	0.0167
Ammonia	195.40	-77.75	6.06×10^{3}	0.0600
Nitrogen	63.18	-210.0	1.25×10^{4}	0.124
Oxygen	54.36	-218.8	1.52×10^{2}	0.00151
Hydrogen	13.84	-259.3	7.04×10^{3}	0.0697

- Shown is the phase diagram for water.
- We can see that it boils at $100^{\circ} \mathrm{C}$ at 1 atm .
- At pressure ≈ 218 atm, water only boils at $\approx 374^{\circ} \mathrm{C}$. That's the critical point.
- A pressure cooker or covered pot will cook food faster because the water can exist as a liquid at higher temperatures without boiling away.
- At temperatures above the critical, the liquid phase does not exist at any pressure.
- We also see that water melts at $0^{\circ} \mathrm{C}$ at 1 atm .
- When we apply pressure to ice (e.g. with hands or car tires) it decreases the melting temperature.
- At sufficiently low pressures there is no liquid phase.
- For water, this is <0.00600 atm.
- The phase change directly from solid to gas is called sublimation.
- E.g.: Solid CO_{2}, a.k.a. dry ice.

Vapor pressure

- Vapor pressure is the pressure at which a gas exists in equilibrium with its solid or liquid phase.
- It is created by molecules that move fast enough to break away from the liquid or solid and become gas molecules.
- It depends on both the substance and its temperature: larger temperature $=$ larger vapor pressure.

Dalton's law

- Partial pressure is the pressure a gas would create if it occupied the total volume available.
- According to Dalton's law of partial pressures, the total pressure of a mixture of n gases is the sum of partial pressures of each gas:

$$
P_{\text {total }}=\sum_{i=1}^{n} P_{i}=P_{1}+P_{2}+\cdots+P_{n}
$$

- This law assumes ideal gas behavior and no chemical reactions between the components.

Simulation

- Simulation for states of matter:
https://phet.colorado.edu/sims/html/states-of-matter-basics/latest/states-of-matter-basics all.html

