PHY 256: Introduction To Quantum Physics Summer 2020
 Practice Questions for the Final Assessment

Barak Shoshany
Department of Physics, University of Toronto
60 St. George St., Toronto, Ontario, M5S 1A7, Canada
barak.shoshany@utoronto.ca
http://baraksh.com/PHY256/

June 16, 2020

1. Write the complex number $z=3 \mathrm{e}^{\mathrm{i} \pi}$ in Cartesian coordinates.

Answer:

$$
\begin{equation*}
z=3 \cdot(-1)=-3 . \tag{0.1}
\end{equation*}
$$

Write the complex number $w=1+\mathrm{i}$ in polar coordinates.
Answer:

$$
\begin{equation*}
w=\sqrt{2} \mathrm{e}^{\mathrm{i} \pi / 4} \tag{0.2}
\end{equation*}
$$

Calculate $|z+w|$.
Answer:

$$
\begin{equation*}
|-3+1+i|=|-2+i|=\sqrt{5} . \tag{0.3}
\end{equation*}
$$

What is the complex conjugate of $v=-5 \mathrm{e}^{-7 i}$?
Answer:

$$
\begin{equation*}
v^{*}=-5 \mathrm{e}^{7 \mathrm{i}} . \tag{0.4}
\end{equation*}
$$

2. Let

$$
\begin{equation*}
|A\rangle \equiv\binom{1}{2 \mathrm{i}}, \quad|B\rangle \equiv\binom{-3}{5-\mathbf{i}} . \tag{0.5}
\end{equation*}
$$

Calculate $\langle A \mid B\rangle$.
Answer:

$$
\langle A \mid B\rangle=\left(\begin{array}{ll}
1 & -2 \mathbf{i} \tag{0.6}
\end{array}\right)\binom{-3}{5-\mathbf{i}}=-3-2 \mathbf{i}(5-\mathbf{i})=-5-10 \mathbf{i} .
$$

Calculate $\langle B \mid A\rangle$.
Answer:

$$
\begin{equation*}
\langle B \mid A\rangle=\langle A \mid B\rangle^{*}=-5+10 \mathbf{i} . \tag{0.7}
\end{equation*}
$$

Calculate $|\langle A \mid B\rangle|$.
Answer:

$$
\begin{equation*}
|\langle A \mid B\rangle|=\sqrt{5^{2}+10^{2}}=\sqrt{125}=5 \sqrt{5} . \tag{0.8}
\end{equation*}
$$

Calculate $|A\rangle+|B\rangle$.
Answer:

$$
\begin{equation*}
|A\rangle+|B\rangle=\binom{1}{2 \mathbf{i}}+\binom{-3}{5-\mathbf{i}}=\binom{-2}{5+\mathbf{i}} . \tag{0.9}
\end{equation*}
$$

Calculate $\||A\rangle+|B\rangle \|$.
Answer:

$$
\begin{equation*}
\||A\rangle+|B\rangle \|=\sqrt{2^{2}+5^{2}+1^{2}}=\sqrt{30} . \tag{0.10}
\end{equation*}
$$

3. Let

$$
\begin{equation*}
|A\rangle=\binom{1}{2 \mathbf{i}}, \quad|B\rangle=\binom{2 \mathbf{i}}{1} . \tag{0.11}
\end{equation*}
$$

Do these vectors form an orthonormal basis?
Answer: They are linearly independent, span \mathbb{C}^{2}, and orthogonal since

$$
\langle A \mid B\rangle=\left(\begin{array}{cc}
1 & -2 \mathbf{i} \tag{0.12}
\end{array}\right)\binom{2 \mathbf{i}}{1}=0
$$

but they are not normalized to 1 . So it's an orthogonal basis, but not an orthonormal basis. We can normalize it as follows:

$$
\begin{equation*}
|A\rangle \mapsto \frac{1}{\sqrt{5}}\binom{1}{2 \mathbf{i}}, \quad|B\rangle \mapsto \frac{1}{\sqrt{5}}\binom{2 \mathbf{i}}{1} . \tag{0.13}
\end{equation*}
$$

4. Let

$$
A=\left(\begin{array}{cc}
1 & 2 \mathrm{i} \tag{0.14}\\
0 & -1
\end{array}\right), \quad|B\rangle=\binom{0}{\mathrm{i}}
$$

Calculate $A|B\rangle$ and $\langle B| A^{\dagger}$.
Answer:

$$
\begin{gather*}
A|B\rangle=\left(\begin{array}{cc}
1 & 2 \mathbf{i} \\
0 & -1
\end{array}\right)\binom{0}{\mathbf{i}}=\binom{-2}{-\mathbf{i}} \tag{0.15}\\
\langle B| A^{\dagger}=\left(\begin{array}{ll}
0 & -\mathbf{i}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 \mathbf{i} & -1
\end{array}\right)=\left(\begin{array}{ll}
-2 & \mathbf{i}
\end{array}\right), \tag{0.16}
\end{gather*}
$$

or we can just calculate

$$
\begin{equation*}
\langle B| A^{\dagger}=(A|B\rangle)^{\dagger} . \tag{0.17}
\end{equation*}
$$

5. Let

$$
\begin{equation*}
|A\rangle=\binom{1}{\mathbf{i}}, \quad|B\rangle=\binom{-\mathbf{i}}{2} \tag{0.18}
\end{equation*}
$$

Calculate $|A\rangle\langle B|$.
Answer:

$$
|A\rangle\langle B|=\binom{1}{\mathbf{i}}\left(\begin{array}{ll}
\mathbf{i} & 2
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{i} & 2 \tag{0.19}\\
-1 & 2 \mathbf{i}
\end{array}\right) .
$$

Calculate $\langle B \mid A\rangle\langle B \mid A\rangle$.

Answer:

$$
\langle B \mid A\rangle\langle B \mid A\rangle=\left(\begin{array}{ll}
\mathbf{i} & 2
\end{array}\right)\left(\begin{array}{cc}
\mathbf{i} & 2 \tag{0.20}\\
-1 & 2 \mathbf{i}
\end{array}\right)\binom{1}{\mathbf{i}}=\left(\begin{array}{ll}
\mathbf{i} & 2
\end{array}\right)\binom{3 \mathbf{i}}{-3}=-3-6=-9
$$

or just note that

$$
\langle B \mid A\rangle=\left(\begin{array}{ll}
\mathbf{i} & 2 \tag{0.21}
\end{array}\right)\binom{1}{\mathbf{i}}=\mathbf{i}+2 \mathbf{i}=3 \mathbf{i},
$$

so

$$
\begin{equation*}
\langle B \mid A\rangle\langle B \mid A\rangle=\langle B \mid A\rangle^{2}=-9 \tag{0.22}
\end{equation*}
$$

6. Let

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{13}}\binom{2}{3 \mathbf{i}}, \quad|B\rangle=\frac{1}{\sqrt{13}}\binom{3 \mathbf{i}}{2} . \tag{0.23}
\end{equation*}
$$

Calculate $|A\rangle\langle A|+|B\rangle\langle B|$.
Answer: No need to calculate, it's an orthonormal basis, so $|A\rangle\langle A|+|B\rangle\langle B|$ is just the identity matrix by the completeness relation.
7. A 2×2 matrix A satisfies for some vector $|B\rangle$

$$
\begin{equation*}
A|B\rangle=\mathbf{i}|B\rangle \tag{0.24}
\end{equation*}
$$

Can this matrix be Hermitian?
Answer: No, since it has a non-real eigenvalue. Hermitian matrices can only have real eigenvalues.
Can this matrix be unitary?
Answer: Possibly, since its eigenvalues should have unit magnitude.
The matrix also satisfies for some other vector $|C\rangle$

$$
\begin{equation*}
A|C\rangle=\mathbf{i}|C\rangle \tag{0.25}
\end{equation*}
$$

Is it diagonalizable?
Answer: Not necessarily, since $|C\rangle$ might be just a scalar multiple of $|B\rangle$. The matrix also satisfies for some vector $|D\rangle$

$$
\begin{equation*}
A|D\rangle=-\mathbf{i}|D\rangle \tag{0.26}
\end{equation*}
$$

Is it diagonalizable?
Answer: Yes, now we know it has two different eigenvalues, so it is diagonalizable to

$$
\left(\begin{array}{cc}
\mathbf{i} & 0 \tag{0.27}\\
0 & -\mathbf{i}
\end{array}\right)
$$

8. Consider the matrix

$$
A=y\left(\begin{array}{ll}
1 & x \tag{0.28}\\
\mathbf{i} & 1
\end{array}\right)
$$

For which values of x and y can this matrix represent evolution in quantum mechanics?
Answer: It has to be unitary, so its rows (or columns) must form an orthonormal basis. We see that we should take

$$
x=\mathbf{i}, \quad y=\frac{1}{\sqrt{2}}, \quad A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & \mathbf{i} \tag{0.29}\\
\mathbf{i} & 1
\end{array}\right) .
$$

Another way to solve this would be to calculate $A A^{\dagger}$ and demand that it's the identity matrix, but that would be a much longer calculation.
9. Write down a normal 2×2 matrix that has the number 7 i in the top-left element.
Answer: For example

$$
A=\left(\begin{array}{cc}
7 \mathbf{i} & 0 \tag{0.30}\\
0 & 0
\end{array}\right) \quad \Longrightarrow \quad A^{\dagger}=\left(\begin{array}{cc}
-7 \mathbf{i} & 0 \\
0 & 0
\end{array}\right), \quad A^{\dagger} A=A A^{\dagger}=\left(\begin{array}{cc}
49 & 0 \\
0 & 0
\end{array}\right)
$$

Write down a normal 2×2 matrix that has the number 7 i in the top-right element.
Answer: The simplest solution is to make a Hermitian matrix, for example

$$
A=\left(\begin{array}{cc}
0 & 7 \mathbf{i} \tag{0.31}\\
-7 \mathbf{i} & 0
\end{array}\right)=A^{\dagger}, \quad A^{\dagger} A=A A^{\dagger}=\left(\begin{array}{cc}
-49 & 0 \\
0 & -49
\end{array}\right)
$$

10. What is the probability distribution for the sum of three coin tosses, with heads $=0$ and tails $=1$?
Answer: There are $2^{3}=8$ possible rolls, and the results can be numbers
between 0 and 3 . We count the number of rolls that make up each possible result:

$$
\begin{align*}
& 0=0+0+0, \quad 1=1+0+0=0+1+0=0+0+1, \tag{0.32}\\
& 2=1+1+0=1+0+1=0+1+1, \quad 3=1+1+1 . \tag{0.33}
\end{align*}
$$

So the answer is:

$$
\begin{equation*}
P(0)=\frac{1}{8}, \quad P(1)=\frac{3}{8}, \quad P(2)=\frac{3}{8}, \quad P(3)=\frac{1}{8} . \tag{0.34}
\end{equation*}
$$

What is the expected value?
Answer:

$$
\begin{equation*}
0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{3}{2} . \tag{0.35}
\end{equation*}
$$

Or we can recall that the expected value for one coin toss is $1 / 2$, so for three coin tosses it will be $3 / 2$.
11. A qubit is in the state

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{5}}\binom{1}{2 \mathbf{i}} \tag{0.36}
\end{equation*}
$$

Write it as a superposition of the state $|+\rangle$ and $|-\rangle$, where

Answer: We calculate that

$$
\begin{align*}
& \langle+\mid A\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \frac{1}{\sqrt{5}}\binom{1}{2 \mathbf{i}}=\frac{1}{\sqrt{10}}(1+2 \mathbf{i}) \tag{0.38}\\
& \langle+\mid A\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -1
\end{array}\right) \frac{1}{\sqrt{5}}\binom{1}{2 \mathbf{i}}=\frac{1}{\sqrt{10}}(1-2 \mathbf{i}) . \tag{0.39}
\end{align*}
$$

Therefore
12. Find four different states of a qubit such that the measurement of σ_{z} will yield 0 with probability $2 / 3$ and 1 with probability $1 / 3$.
Answer: For example

$$
\begin{equation*}
\sqrt{\frac{2}{3}}|0\rangle+\sqrt{\frac{1}{3}}|1\rangle, \tag{0.40}
\end{equation*}
$$

$$
\begin{align*}
& \sqrt{\frac{2}{3}}|0\rangle-\sqrt{\frac{1}{3}}|1\rangle, \tag{0.41}\\
& \sqrt{\frac{2}{3}}|0\rangle+\mathrm{i} \sqrt{\frac{1}{3}}|1\rangle, \tag{0.42}\\
& \sqrt{\frac{2}{3}}|0\rangle-\mathrm{i} \sqrt{\frac{1}{3}}|1\rangle . \tag{0.43}
\end{align*}
$$

The trick is that the relative phase between the two states in the superposition should be different. But a vector such as

$$
\begin{equation*}
-\sqrt{\frac{2}{3}}|0\rangle+\sqrt{\frac{1}{3}}|1\rangle \tag{0.44}
\end{equation*}
$$

will represent the same state as (0.41), since they are related by an overall phase of -1 .
13. A qubit is in the state

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{10}}\binom{\mathbf{i}}{3 \mathbf{i}} \tag{0.45}
\end{equation*}
$$

What is the expectation value for a measurement of spin along the x axis? You can use the fact that

$$
S_{x}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \tag{0.46}\\
1 & 0
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
\langle A| S_{x}|A\rangle & =\frac{1}{\sqrt{10}}\left(\begin{array}{ll}
-\mathbf{i} & -3 \mathbf{i}
\end{array}\right) \frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{\sqrt{10}}\binom{\mathbf{i}}{3 \mathbf{i}} \\
& =\frac{1}{20}\left(\begin{array}{ll}
-\mathbf{i} & -3 \mathbf{i}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\mathbf{i}}{3 \mathbf{i}} \\
& =\frac{1}{20}\left(\begin{array}{ll}
-\mathbf{i} & -3 \mathbf{i}
\end{array}\right)\binom{3 \mathbf{i}}{\mathbf{i}} \\
& =\frac{1}{20}(3+3) \\
& =\frac{3}{10}
\end{aligned}
$$

14. The measurement of spin of a particle along the z axis was 2 . What can you say about the other possibilities for a measurement of spin for that particle? Answer: For a particle of spin s, where

$$
\begin{equation*}
s \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right\} \tag{0.47}
\end{equation*}
$$

the measurement of the spin along any axis can yield any of the values

$$
\begin{equation*}
\{-s,-s+1, \ldots, s-1, s\} \tag{0.48}
\end{equation*}
$$

Since 2 was the result of the measurement, we know that for this particle $s \geq$ 2, and furthermore, it must be an integer (since half-integer s only allows halfinteger measurement results). The other possibilities for a measurement of spin for that particle will thus be $-2,1,0,1$, but there could of course be other (integer) options if $s>2$.
15. Let

$$
\begin{equation*}
|A\rangle=\binom{2}{\mathbf{i}}, \quad|B\rangle=\binom{\mathbf{i}}{3} \tag{0.49}
\end{equation*}
$$

Calculate the tensor product $|A\rangle \otimes|B\rangle$.

Answer:

$$
|A\rangle \otimes|B\rangle=\binom{2}{\mathbf{i}} \otimes\binom{\mathbf{i}}{3}=\binom{2 \cdot\binom{\mathbf{i}}{3}}{\mathbf{i} \cdot\binom{\mathbf{i}}{3}}=\left(\begin{array}{c}
2 \mathbf{i} \tag{0.50}\\
6 \\
-1 \\
3 \mathbf{i}
\end{array}\right) .
$$

Let

$$
C=\left(\begin{array}{cc}
1 & 0 \tag{0.51}\\
0 & \mathbf{i}
\end{array}\right), \quad D=\left(\begin{array}{cc}
0 & 2 \\
2 \mathbf{i} & 0
\end{array}\right)
$$

Calculate the tensor product $C \otimes D$.

Answer:

$$
C \otimes D=\left(\begin{array}{cc}
\left(\begin{array}{cc}
0 & 2 \\
2 \mathbf{i} & 0
\end{array}\right) & \left.\begin{array}{cc}
0 & \\
0 & \mathbf{i}\left(\begin{array}{cc}
0 & 2 \\
2 \mathbf{i} & 0
\end{array}\right)
\end{array}\right)=\left(\begin{array}{cccc}
0 & 2 & 0 & 0 \\
2 \mathbf{i} & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \mathbf{i} \\
0 & 0 & -2 & 0
\end{array}\right) . . . ~ . ~ \tag{0.52}
\end{array}\right.
$$

Calculate the action of $C \otimes D$ on $|A\rangle \otimes|B\rangle$.
Answer:

$$
(C \otimes D)(|A\rangle \otimes|B\rangle)=\left(\begin{array}{cccc}
0 & 2 & 0 & 0 \tag{0.53}\\
2 \mathbf{i} & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \mathbf{i} \\
0 & 0 & -2 & 0
\end{array}\right)\left(\begin{array}{c}
2 \mathbf{i} \\
6 \\
-1 \\
3 \mathbf{i}
\end{array}\right)=\left(\begin{array}{c}
12 \\
-4 \\
-6 \\
2
\end{array}\right) .
$$

16. Consider the composite state of two qubits

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{6}}(|00\rangle+\mathrm{i}|01\rangle+2|10\rangle) . \tag{0.54}
\end{equation*}
$$

Is it entangled?
Answer: $\alpha_{00} \alpha_{11}-\alpha_{01} \alpha_{10}=1 \cdot 0-\mathbf{i} \cdot 2=-2 \mathbf{i} \neq 0$, so it is entangled. Or instead of calculating, we can just notice by inspection that there is a correlation between the qubits, since 1 for first qubit implies that we must have 0 for second qubit.
Consider the composite state of two qubits

$$
\begin{equation*}
|B\rangle=\frac{1}{\sqrt{6}}(\mathbf{i}|00\rangle+2|01\rangle-2 \mathbf{i}|10\rangle+4|11\rangle) . \tag{0.55}
\end{equation*}
$$

Is it entangled?
Answer: $\alpha_{00} \alpha_{11}-\alpha_{01} \alpha_{10}=\mathbf{i} \cdot 4-2 \cdot(-2 \mathbf{i})=4 \mathbf{i}+4 \mathbf{i}=8 \mathbf{i} \neq 0$, so it is entangled. Here it is not immediately obvious that the qubits are correlated, but in fact they are!
Consider the composite state of two qubits

$$
\begin{equation*}
|C\rangle=\frac{1}{5}(\mathbf{i}|00\rangle-2|01\rangle-2 \mathbf{i}|10\rangle+4|11\rangle) . \tag{0.56}
\end{equation*}
$$

Is it entangled?
Answer: $\alpha_{00} \alpha_{11}-\alpha_{01} \alpha_{10}=\mathbf{i} \cdot 4-(-2) \cdot(-2 \mathbf{i})=4 \mathbf{i}-4 \mathbf{i}=0$, so it is in fact not entangled.
Write this state as a tensor product.

Answer:

$$
\begin{aligned}
|C\rangle & =\frac{1}{5}(\mathbf{i}|0\rangle \otimes|0\rangle-2|0\rangle \otimes|1\rangle-2 \mathbf{i}|1\rangle \otimes|0\rangle+4|1\rangle \otimes|1\rangle) \\
& =\frac{1}{5}(|0\rangle \otimes(\mathbf{i}|0\rangle-2|1\rangle)-2|1\rangle \otimes(\mathbf{i}|0\rangle-2|1\rangle)) \\
& =\frac{1}{\sqrt{5}}(|0\rangle-2|1\rangle) \otimes \frac{1}{\sqrt{5}}(\mathbf{i}|0\rangle-2|1\rangle) .
\end{aligned}
$$

17. The system was in the state

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{13}}\binom{2}{3 \mathbf{i}} \tag{0.57}
\end{equation*}
$$

Now it's in the state

$$
\begin{equation*}
U|A\rangle=\frac{1}{\sqrt{13}}\binom{3 \mathbf{i}}{2 \mathbf{i}} \tag{0.58}
\end{equation*}
$$

What was the unitary operator responsible for the evolution?

Answer: The components were flipped and a phase of i was added to the lower component, so

$$
U=\left(\begin{array}{ll}
0 & 1 \tag{0.59}\\
\mathrm{i} & 0
\end{array}\right)
$$

What will be the state after the same amount of time has passed?
Answer:

$$
\begin{equation*}
U^{2}|A\rangle=\frac{1}{\sqrt{13}}\binom{2 \mathrm{i}}{-3} . \tag{0.60}
\end{equation*}
$$

18. A qubit is given by

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{5}}\binom{2}{\mathrm{i}} \tag{0.61}
\end{equation*}
$$

What is the action of the NOT gate on this qubit?
Answer: The NOT gate just flips the components, so

$$
\begin{equation*}
\mathrm{NOT}|A\rangle=\frac{1}{\sqrt{5}}\binom{\mathrm{i}}{2} \tag{0.62}
\end{equation*}
$$

19. The composite state of two qubits is given by

$$
\begin{equation*}
|A\rangle=\frac{1}{3}(|00\rangle+2|01\rangle-2 \mathbf{i}|11\rangle) . \tag{0.63}
\end{equation*}
$$

What is the probability to measure 0 for the first qubit?
Answer:

$$
\begin{equation*}
\left|\frac{1}{3}\right|^{2}+\left|\frac{2}{3}\right|^{2}=\frac{5}{9} . \tag{0.64}
\end{equation*}
$$

What will be the state of the two qubits after the measurement?

Answer:

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{5}}(|00\rangle+2|01\rangle) . \tag{0.65}
\end{equation*}
$$

What is the probability to measure 1 for the first qubit?
Answer:

$$
\begin{equation*}
\left|\frac{-2 \mathrm{i}}{3}\right|^{2}=\frac{4}{9}, \quad \text { or just: } 1-\frac{5}{9}=\frac{4}{9} . \tag{0.66}
\end{equation*}
$$

What will be the state of the two qubits after the measurement?

Answer:

$$
\begin{equation*}
|A\rangle=|11\rangle . \tag{0.67}
\end{equation*}
$$

What is the probability to measure 0 for the second qubit?
Answer:

$$
\begin{equation*}
\left|\frac{1}{3}\right|^{2}=\frac{1}{9} \tag{0.68}
\end{equation*}
$$

What will be the state of the two qubits after the measurement?
Answer:

$$
\begin{equation*}
|A\rangle=|00\rangle . \tag{0.69}
\end{equation*}
$$

What is the probability to measure 1 for the second qubit? Answer:

$$
\begin{equation*}
\left|\frac{2}{3}\right|^{2}+\left|\frac{-2 \mathrm{i}}{3}\right|^{2}=\frac{8}{9}, \quad \text { or just: } 1-\frac{1}{9}=\frac{8}{9} \tag{0.70}
\end{equation*}
$$

What will be the state of the two qubits after the measurement? Answer:

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{2}}(|01\rangle-\mathrm{i}|11\rangle) \tag{0.71}
\end{equation*}
$$

