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1 Introduction

1.1 Course Outline

PHYS 4P51 is a quantum mechanics course at the 4th-year undergraduate level. It will be
your last course in quantum mechanics before graduate school, and thus it should prepare
you for graduate-level study and research.

My goal is that by the end of this course, you will gain a deep and intuitive understanding of
the foundations of quantum theory, from the modern point of view of 21st-century theoretical
physics – as it is currently understood by researchers in cutting-edge fields such as quantum
foundations, quantum information, quantum computation, quantum field theory, and quan-
tum gravity. Such an understanding will be absolutely crucial if you want to be a theorist,
and will also be extremely useful if you want to be an experimentalist.

Before you begin this course, you should forget everything you learned about quantum
mechanics before! We will re-learn quantum theory from scratch, developing it in an axiomatic
and mathematically rigorous way from first principles. We will see that there is nothing
mysterious about quantum mechanics, and obtain insight that will allow us to understand
how it makes the universe works at the most fundamental level.

1.2 Exercises and Problems

Throughout these notes, you will find many exercises and problems.

• Exercises are usually just calculations. They are meant to verify that you understand
how to calculate things, and they are usually simple and straightforward.
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• Problems are usually proof-based. They are meant to verify that you understand the
more abstract relations between the concepts we will introduce, and they often require
some thought.

2 Non-Technical Overview

In this chapter, I will provide a non-technical overview of quantum physics, and how it
compares to classical physics. I won’t go into exactly who discovered what and in which year,
because this is not a history course; this is a course about how the universe works. However,
if you are interested in the history of quantum mechanics, there are many excellent websites
and textbooks on the subject, and you are encouraged to look them up.

Instead, I will focus on two main goals in this chapter:

1. Introducing some of the fundamental experiments which illustrate why classical me-
chanics needs to be replaced with a more fundamental theory. This should also convince
you that your classical intuition must be replaced with quantum intuition, which is
what we will try to develop in this course.

2. Summarizing the fundamental properties of quantum mechanics and the differences
between it and classical mechanics in non-technical terms, without going into the math.
This should give you some idea of what we will study throughout this course in much
more detail and with the full, uncensored mathematical framework.

2.1 The Failures of Classical Physics

2.1.1 Black-Body Radiation and the Ultraviolet Catastrophe

A black body is an object that absorbs all incoming light at all frequencies. It absorbs it and
does not reflect it – therefore, it is black. More generally, it absorbs not just light, but all
electromagnetic radiation. Black bodies also emit radiation, due to their heat. Electromagnetic
radiation has a spectrum of wavelengths of different lengths. We are interested in predicting
the amount of radiation emitted by the black body at each wavelength, which we will refer to
as the black body’s spectrum.

One can try to use classical physics to calculate this spectrum. It turns out that the amount of
the radiation is inversely proportional to the wavelength1. This means that as the wavelength
approaches zero, the amount of radiation approaches infinity! This is illustrated by the black
curve in Figure 2.1. This result is called the ultraviolet catastrophe, since ultraviolet light has
shorter wavelengths than visible light. Obviously, this does not fit well with experimental
data, since when we measure the total radiation emitted from a black body, we most definitely
do not measure it to be infinity!

1More precisely, the power emitted per unit area per unit solid angle per unit wavelength is proportional to
1/λ4 where λ is the wavelength... But fortunately, we don’t need to be very precise here!
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Figure 2.1: The electromagnetic spectrum of a black body. Source: Wikipedia.

To solve this problem, we must use quantum physics. If we assume that radiation can only be
emitted in discrete “packets” of energy called quanta, we get the correct spectrum of radiation,
which is compatible with experiment. The law describing the amount of radiation at each
wavelength is called Planck’s law. In Figure 2.1, we can see three different curves, calculated
using Planck’s law, giving the radiation spectrum at different temperatures (in Kelvin). You
can see that the total amount of radiation is no longer infinite. The quanta of electromagnetic
radiation are called photons.

2.1.2 The Photoelectric Effect

When light hits a material, it causes the material to emit electrons. This phenomenon is called
the photoelectric effect. Using classical physics, and the assumption that light is a wave, we can
make the following predictions:

• Brighter light should have more energy, so it should cause the emitted electrons to have
more kinetic energy, and thus move faster.

• Light with higher frequency should hit the material more often, so it should cause a
higher rate of electron emission, resulting in a larger electric current.
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Figure 2.2: The photoelectric effect. Source: Khan Academy.

• Assuming there is a certain minimum energy needed to dislodge an electron from the
material, sufficiently bright light of any frequency should cause electron emission.

However, what actually happens is the exact opposite:

• The kinetic energy of the emitted electrons increases with frequency, not brightness.

• The electric current increases with brightness, not frequency.

• Electrons are emitted only when the frequency of the light exceeds a certain threshold,
regardless of how bright it is.

This is illustrated in Figure 2.2, where the red light does not cause any electrons to be emitted,
but the green and blue lights do, since they have higher frequency. Furthermore, since the
blue light has higher frequency than the green light, the kinetic energy of the emitted electrons
is larger.

To explain this, we must again use quantum physics. Einstein proposed to use the same model
that Planck suggested to solve the ultraviolet catastrophe, where light is made of discrete
photons. Each photon has energy proportional to the frequency of the light, and brighter light
of the same frequency simply has more photons, each photon still with the same amount of
energy. This model fits the predictions perfectly.

So in Figure 2.2, making the red light brighter will increase the number of photons, but no
matter how bright it is, the individual photons it’s made of still do not have enough energy to
dislodge an electron on their own. On the other hand, each individual photon of the green
and blue lights has, on its own, enough energy to dislodge a photon, and even if the light is
very dim, the electrons will still be emitted.

2.1.3 The Double-Slit Experiment

The previous two experiments may have convinced you that light is not a wave, but a particle.
But is that really the case? The double-slit experiment shows that things are actually more
complicated. In this experiment, a light beam hits a plate with two parallel slits. Most of the
light is blocked by the plate, but some of it passes through the slits and hits a screen, creating
a pattern of bright and dark bands.

7
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Figure 2.3: Light waves in the double-slit experiment. Source: Wikipedia.

Figure 2.4: Constructive (left) and destructive (right) interference of two light
waves. Source: Wikipedia.

This can be most naturally explained by assuming that light is not a particle, but a wave.
Each of the slits becomes the origin of a new wave, as illustrated in Figure 2.3. Each of the
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Figure 2.5: An interference pattern created by electrons in the double-slit experi-
ment. Each image (from top to bottom) corresponds to a later point in time, after
more electrons have accumulated. Source: Wikipedia.
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two waves has crests and troughs. When a crest of one wave is at the same place as a crest
of the other wave, they add up to create a crest with double the magnitude. This is called
constructive interference. On the other hand, if a crest of one wave is at the same place as a
trough of the other wave, they cancel each other. This is called destructive interference. See
Figure 2.4 for an illustration. The pattern on the screen, as seen in Figure 2.3, is a consequence
of this interference.

So the double-slit experiment seems to prove that light is a wave, in contradiction with
black-body radiation and the photoelectric effect, which seem to prove that light is a particle.
It turns out that, in fact, both are correct; the quantum nature of light has the consequence
that it sometimes behaves like a classical wave, and other times like a classical particle. This is
called wave-particle duality. Contrary to common misconception, this doesn’t mean that light
is “both a wave and a particle”; it simply demonstrates that the classical concepts of “wave”
and “particle” are not the proper way to describe reality.

Okay, so light exhibits wave-particle duality. Maybe this makes sense. But matter, which is
a tangible thing you can touch, is definitely made of particles, right? To check that, we can
replace the beam of light with a beam of electrons. Since we think electrons are particles, not
waves, we expect to find on the screen not an interference pattern, but just individual dots
corresponding to the individual electron particles. And this is indeed what happens, except...
If we run the experiment for some time, and let the electrons build up, then after a while we
see that an interference pattern emerges nonetheless! This is shown in Figure 2.5.

What does this mean? It means that, in quantum physics, both light and matter exhibit
wave-particle duality. In classical physics, the measurement of the position of the electron
on the screen is deterministic; if we know the initial position and velocity of the electron,
then we can predict exactly where the electron lands. In quantum physics, we instead have a
probability distribution, which gives us the probability for the electron to be measured at each
particular point on the screen. This probability distribution turns out to propagate in space
like a wave, and interfere with itself constructively and destructively on the way as a wave
does, which is what causes the interference pattern on the screen – it is actually a pattern of
probabilities! In the end, the probability will be enlarged on some points of the screen and
reduced on other points.

To clarify how the measurement of the positions of the electrons on the screen yields a
probability distribution, consider instead a 6-sided die. If you roll the die just once or twice,
you won’t have much information about the probabilities to roll each number on the die. This
is analogous to sending just a couple of electrons through the slits. What you need to do is to
roll the die a large number of times, let’s say 6,000 times. Then you count how many times
the die rolled on each number. For example, if it rolled around 1,000 times on each number,
then you know the die is fair; but if it rolled around 2,000 times on 6 and around 800 times
on every other number, then you know the die is loaded. Similarly, we need to send a large
number of electrons through the slits in order to determine the probability distribution for
their positions on the screen. It turns out that the position of the electron is “loaded”!

As an aside, in 21st century terms, the precise answer to the question “is light a wave or a
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particle?” turns out to be that both of them are different aspects of the same fundamental
entity called the quantum electromagnetic field. This field propagates from place to place like
a wave, but on the other hand, if you put enough energy into it, you can cause a quantum
excitation in the field. It is this excitation that behaves like a particle.

Moreover, it turns out that all elementary particles are quantum fields, and thus all of them
exhibit these two aspects. This is called quantum field theory. It neatly unites quantum me-
chanics with special relativity, and explains elementary particle physics in amazing accuracy
– it is actually the most accurate theory in all of science! In this course we will focus on
non-relativistic quantum mechanics, which is to quantum field theory as Newtonian physics
is to special relativity. Quantum field theory is much more complicated, and is usually only
taught at the graduate-school level.

2.1.4 The Stern-Gerlach Experiment
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1

Figure 2.6: The Stern-Gerlach experiment. Source: Wikipedia.

In the Stern-Gerlach experiment, electrically neutral particles, such as silver atoms, are sent
through an inhomogeneous magnetic field and into a screen. For reasons we won’t go into
(since they require some knowledge of electrodynamics), the magnetic field will deflect the
particle up or down by an amount proportional to its angular momentum. According to
classical physics, this angular momentum can have any value, and so we would expect to see

11



the particles hit every possible point along a continuous line on the screen. This is item (4) in
Figure 2.6.

However, what actually happens when we perform the experiment is that the particles are
deflected either up or down by the exact same amount each time, and hit only two specific
discrete points on the screen. This is item (5) in Figure 2.6. To explain this, we must again
use quantum physics. Quantum particles are not seen as classically spinning objects; instead
they are said to have an intrinsic form of angular momentum called spin. For particles like
electrons or silver atoms, a measurement of spin can only yield one of two options: “spin up”
or “spin down”.

The previous experiments we discussed showed us that something that is classically con-
tinuous – light, or more generally, electromagnetic radiation – is quantized in the quantum
theory into discrete packets or quanta of energy called photons. Similarly, the Stern-Gerlach
experiment tells us that another classically continuous thing, angular momentum, is also
quantized in the quantum theory – into discrete spin. This seems to be a general property of
most, but not all, quantum systems: something that in classical physics was continuous turns
out to actually be discrete in quantum physics.

Finally, let me just mention that one can use spin to create qubits, or “quantum bits”, where
“spin up” represents a value of 0 and “spin down” represents a value of 1. Because spin
is a quantum quantity, it satisfies all of the weird properties of quantum mechanics that
we will discuss later. By taking advantage of these quantum properties, we can potentially
do calculations faster with a quantum computer that uses qubits compared to a classical
computer that uses classical bits.

2.2 Quantum vs. Classical Mechanics

Let us now summarize, in a non-technical way, the most important features of quantum
mechanics and how they differ from their classical-mechanical counterparts.

1. Quantum mechanics is, as far as we know, the exact and fundamental theory of reality.
Classical mechanics turns out to be just an approximation to this theory. This means
that, in general, all modern theories of physics must be quantum theories if they intend
to be fundamental. One important exception to that rule is general relativity, which we
do not yet know how to describe as a quantum theory; if we did, we would call that
theory quantum gravity. However, this is usually not a problem, since general relativity
is mostly needed only when describing huge things like planets, stars, galaxies, and so
on, in which case we do not need quantum mechanics since we are within the realm of
validity of the classical approximation. In fact, this leads us to the next property:

2. Quantum mechanics is the theory of the smallest things. This includes elementary
particles, atoms, and molecules. Since all big things are made of small things, quantum
mechanics also describes humans, planets, galaxies, and the whole universe. However,
this is exactly where the classical limit comes in; when many small quantum systems
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Figure 2.7: The uncertainty principle.

make up one big system, classical mechanics generally turns out to be a good enough
description for all practical purposes. This is similar to how relativity is always the
correct way to describe physics, but at low velocities, much smaller than the speed of
light, Newtonian physics is a good enough approximation.

3. Quantum mechanics usually involves discrete things. This is in contrast with classical
mechanics, which usually involves continuous things. In fact, continuous classical
things generally turn out to be made of discrete quantum things. We saw an example of
this when we discussed how light – a continuous electromagnetic field – is actually made
of discrete photons. Similarly, we saw that angular momentum, which is continuous in
the classical theory, is replaced by discrete spin in the quantum theory.

4. Quantum mechanics is a probabilistic theory. Classical mechanics, on the other hand,
is a deterministic theory. For example, in classical mechanics, given a particle’s exact
position and momentum at any one time, we can (in principle) predict its position
and momentum at any other time – with absolute certainty. However, in quantum
mechanics, the most we can ever hope to know is the probability distribution to find the
particle at a certain position or with a certain momentum. This is illustrated in Figure
2.7.

5. Quantum mechanics allows for superposition of states. In classical mechanics, the
state of a particle is simply given by the exact values of its position and momentum.
In contrast, in quantum mechanics the particle can – in fact, usually must – be in
a superposition of possible positions and momenta. Each one of the possibilities in
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the superposition has a probability assigned to it, and this is where the probability
distribution in Figure 2.7 comes from.

6. Quantum mechanics features uncertainty in measurements. This is called the uncer-
tainty principle. In classical mechanics, at least theoretically, we can precisely know both
the position and momentum of the particle. However, in quantum mechanics, the more
we know about the position, the less we know about the momentum – and vice versa.
If the position probability distribution is narrow and concentrated at a certain region,
meaning that there is low uncertainty in the position, then one can prove that the mo-
mentum probability distribution must be wide, meaning that there is high uncertainty
in the momentum. The opposite is also true. This is again illustrated in Figure 2.7.

7. Quantum mechanics has a stronger type of correlation called entanglement. Classical
mechanics also allows for correlation. For example, let’s say I have two sealed envelopes
with notes inside them, one with the number 0 and the other with the number 1. I give
one to Alice and one to Bob. If Alice opens her envelope and sees the number 0, she
can be sure that Bob has the envelope with the number 1, and vice versa. The results
are clearly correlated. However, if we replace the notes with qubits – quantum bits
which are in a superposition of 0 and 1 – then the envelopes are now correlated more
strongly via quantum entanglement. We will discuss later in exactly what way quantum
entanglement is stronger than classical correlation, but right now we will note that this
fact is what gives quantum computers their power.

3 Mathematical Background

Quantum theory is the theoretical framework believed to describe all aspects of our universe
at the most fundamental level. Mathematically, as we will see, it is relatively simple, although
much more abstract than classical physics. However, conceptually, it is very hard to under-
stand using the classical intuition we have from our daily lives. In these lectures we will learn
to develop quantum intuition.

In this chapter we shall learn some basic mathematical concepts, focusing on complex num-
bers, linear algebra, and probability theory, which will be used extensively throughout the
course. Even if the student is already familiar with these concepts, it is still a good idea to
go over this chapter, since the unique notation commonly used in quantum mechanics is
different than the notation used elsewhere in mathematics and physics.

3.1 Complex Numbers

Complex numbers are at the very core of the mathematical formulation of quantum theory.
In this section we will give a review of complex numbers and present some definitions and
results that will be used throughout the course.
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3.1.1 Motivation

In real life, we only encounter real numbers. These numbers form a field, that is, a set of
elements with well-defined operations of addition, subtraction, multiplication, and division.
This field is denoted R. Geometrically, we can imagine R as a 1-dimensional line, stretching
from −∞ to +∞.

Unfortunately, it turns out that the field of real numbers has a serious flaw. One can write
down completely reasonable-looking quadratic equations, with only real coefficient, which
nonetheless have no solutions in R. Consider the most general quadratic equation:

ax2 + bx + c = 0, a, b, c ∈ R. (3.1)

One can easily prove (by completing the square) that there are two potential solutions, given
by

x± ≡
−b±

√
b2 − 4ac

2a
. (3.2)

Here, one solution corresponds to the choice + and the other one to −. However, the square
root
√

b2 − 4ac poses a problem, because the square of a real number is always non-negative2:

x2 ≥ 0, ∀x ∈ R. (3.3)

The number (and existence) of real solutions is thus determined by the sign of the expression
inside the square root, called the discriminant ∆ ≡ b2 − 4ac:

∆ > 0 : two real roots x± =
−b±

√
∆

2a
,

∆ = 0 : one real root x = − b
2a

,

∆ < 0 : no real roots.

(3.4)

It would be very convenient (not to mention more elegant) to have a field of numbers that is
algebraically closed, meaning that every non-constant polynomial (and in particular, a quadratic
polynomial) with coefficients in the field has a root in the field.

Since the problem stems from the fact that no real number can square to a negative number,
let us simply extend our field with just one number, the imaginary unit, denoted3 i, whose sole
purpose is to square to a negative number. The most natural choice is for i to square to −1:

i2 ≡ −1. (3.5)

2Here, ∀means “for all”.
3We use non-italic font exclusively for i in order to distinct it from i, which will be used for labels and variables.

Of course, it is usually a wise idea not to have both i and i in the same equation in the first place, but sometimes
that is unavoidable.
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The new field created by extending R with i is the field of complex numbers, denoted C. A
general complex number is written

z = a + i b, z ∈ C, a, b,∈ R, (3.6)

where a is called the real part and b is called the imaginary part, both real numbers.

Now, in the quadratic equation, having
√

∆ with a negative ∆ is no longer a problem, since
the number i

√
−∆ squares to ∆:(

i
√
−∆
)2

= i2 (−∆) = (−1) (−∆) = ∆. (3.7)

Therefore, we conclude that every quadratic equation has a solution in the field of complex
numbers4: 

∆ > 0 : two real roots x± =
−b±

√
∆

2a
,

∆ = 0 : one real root x = − b
2a

,

∆ < 0 : two complex roots x± = − b
2a
± i
√
−∆
2a

.

(3.8)

As a matter of fact, this is a special case of the fundamental theorem of algebra: any polynomial
of degree n with complex coefficients5 has at least one, and at most n, unique complex roots6.
The quadratic equation corresponds to the case n = 2.

Exercise 3.1.

A. Solve the quadratic equation
x2 − 6x + 25 = 0. (3.9)

B. Find the quadratic equation whose solutions are z = 7± 2 i.

Problem 3.2. Above we saw that the equation ax2 + bx + c = 0 with a, b, c ∈ R can either
have two real solutions, one real solution, or two complex solutions that are conjugates of
each other.

A. Imaginary numbers7 are numbers of the form i b for b ∈ R. What kind of equation has two
imaginary solutions that are complex conjugates of each other?

B. What kind of equation has two imaginary solutions that are in general not complex
conjugates of each other?

4Note that real numbers are a special case of complex numbers, so the two real roots are also two complex
roots.

5Again, real numbers are a special case of complex numbers, so the coefficients can be all real.
6Or equivalently, it has exactly n not necessarily unique complex roots, accounting for possible degener-

acy/multiplicity. For example, for ∆ = 0 the quadratic equation has two degenerate roots, or one root of
multiplicity 2.

7Sometimes also called purely imaginary numbers.
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C. What kind of equation has two arbitrary complex solutions that are in general not complex
conjugates of each other?

Note: In all of the above, don’t just find a specific equation that has this property – find a
family of equations with arbitrary parameters of certain types.

3.1.2 Operations on Complex Numbers

Complex numbers can be added and multiplied with other complex numbers. There is really
nothing special about these operations, except that it is customary to group the imaginary
parts (i.e. anything that is a multiple of i) together and turn i2 into −1 in the final result:

(a + i b) + (c + i d) = (a + c) + i (b + d) , (3.10)

(a + i b) (c + i d) = (ac− bd) + i (ad + bc) . (3.11)

Next, note that the two solutions to a quadratic equation with ∆ < 0 are the same, up to the
sign of i. That is, if we replace i with − i in one of the solutions, we get the other solution.
Such numbers are called complex conjugates, and the process of replacing i with − i is called
complex conjugation. The complex conjugate of z is denoted z∗:

z = a + i b =⇒ z∗ = a− i b. (3.12)

Of course, the conjugate of the conjugate is the original number:

(z∗)∗ = z. (3.13)

This means that the complex conjugation operation is an involution, that is, its own inverse.

Complex conjugation allows us to write a general formula for the real or imaginary parts of a
complex number, denoted Re z and Im z respectively:

Re z ≡ z + z∗

2
, Im z ≡ z− z∗

2 i
. (3.14)

You can check that if z = a + i b then we get Re z = a and Im z = b, as expected.

Exercise 3.3. What are the real and imaginary parts of 4− 7 i? What is its complex conjugate?

Problem 3.4. If a number is the complex conjugate of itself, can you say anything interesting
about that number? What about if a number is minus the complex conjugate of itself?

3.1.3 The Complex Plane and Real 2-Vectors

Recall that the field of real numbers R is geometrically a line. The space Rn is an n-dimensional
space which is home to real n-vectors, that is, ordered lists of n real numbers of the form
(v1, . . . , vn). In particular, R2 is geometrically a plane, with vectors of the form (x, y).
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z = a + i b = eiϕ

z
* = a - i b = e-iϕ

ϕ

r = |z|

a
Re

-b

b

Im

Figure 3.1: The complex plane, with a complex number z = a + i b and its
conjugate z∗ = a− i b. Also shown is the polar representation of both numbers
(see Section 3.1.4).

The complex plane C is similar to R2, except that instead of the x and y axes we have the real
and imaginary axes respectively. The real unit 1, which squares to +1, defines the positive
direction of the real axis, while the imaginary unit i, which squares to −1, defines the positive
direction of the imaginary axis. This is illustrated in Figure 3.1.

Since C is a plane, we can define vectors on it, just like on R2. A real 2-vector (a, b) is an arrow
in R2 which points from the origin (0, 0) to the point that is a steps in the direction of the x
axis and b steps in the direction of the y axis. A complex number z = a + i b is similarly an
arrow in C which points from the origin 0 to the point that is a steps along the real axis and b
steps along the imaginary axis.

The complex conjugate z∗ = a− i b is obtained by replacing i with − i. Since i defines the
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direction of the imaginary axis, this is equivalent to flipping the imaginary axis. In other
words, z∗ is the reflection of z along the real axis, as shown in Figure 3.1.

From the Pythagorean theorem, we know that the magnitude (or length) of the real 2-vector
(a, b) is

√
a2 + b2. The magnitude or absolute value |z| of the complex number z = a + i b is also√

a2 + b2. (Inspect Figure 3.1 to see how the Pythagorean theorem fits in.) Furthermore, since
z∗ is just a reflection of z, they both have the same magnitude. A convenient way to calculate
the magnitude of either z or z∗ it to multiply them with each other:

|z|2 = |z∗|2 ≡ z∗z = (a + i b) (a− i b) = a2 − i2 b2 = a2 + b2, (3.15)

so
|z| = |z∗| =

√
a2 + b2. (3.16)

For an abstract complex number (where we don’t necessarily know the explicit values of the
real and imaginary parts) one can also write

|z| = |z∗| =
√
(Re z)2 + (Im z)2. (3.17)

We note that there is an isomorphism between complex numbers and real 2-vectors. An
isomorphism between two spaces is a mapping between the spaces that can be taken in either
direction (i.e. is invertible), and preserves the structure of each space. The isomorphism
between C and R2 is given by:

a + i b←→ (a, b) . (3.18)

We have already seen that the norm operation is preserved. Similarly, addition of complex
numbers

(a + i b) + (c + i d) = (a + c) + i (b + d) . (3.19)

maps into addition of 2-vectors

(a, b) + (c, d) = (a + c, b + d) . (3.20)

Exercise 3.5. Let z = 5 + 6 i and w = 7 + 8 i.

A. Calculate z∗, w∗, |z|, |w|, z + w, z− w, |z + w|, |z− w|, and zw.

B. Find the 2-vectors isomorphic to z and w.

Problem 3.6. Let the vector v ≡ (a, b) ∈ R2 be isomorphic to the complex number z ≡
a + i b ∈ C. Show explicitly that the following operations on v map to equivalent operations
on z:

1. Multiplication of v by a real number λ ∈ R.

2. Reflection of v with respect to the x axis.

3. Reflection of v with respect to the y axis.
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4. Reflection of v with respect to the both axes.

Formulate the equivalent operations on z in terms of z itself, without using a, b, Re z, or Im z.

3.1.4 Polar Coordinates and Complex Phases

A vector in R2 can be converted from Cartesian coordinates (x, y) to polar coordinates (r, ϕ).
The r coordinate is the magnitude of the vector, and the ϕ coordinate is the angle that the
vector makes with respect to the x axis. The relation between the coordinate systems is given
by

x = r cos ϕ, y = r sin ϕ, (3.21)

r =
√

x2 + y2, ϕ = arctan
y
x

. (3.22)

This simply follows from the definitions of cos ϕ and sin ϕ, since the vector creates a right
triangle with the x axis (see Figure 3.1). For example, the vector (x, y) =

(
1,
√

3
)

in Cartesian
coordinates corresponds to r = 2 and ϕ = π/3.

x and y can be any real numbers, but r must be non-negative and ϕ must be in the range
(−π, π] (in radians) where ϕ = 0 corresponds to the x axis. However, there is a subtlety here:
the range of the arctan function is (−π/2, π, 2), so ϕ needs to be further adjusted according
to the quadrant. One can instead use a more complicated definition that automatically takes
the quadrant into account:

ϕ =



arctan( y
x ) if x > 0,

arctan( y
x ) + π if x < 0 and y ≥ 0,

arctan( y
x )− π if x < 0 and y < 0,

+π
2 if x = 0 and y > 0,

−π
2 if x = 0 and y < 0,

undefined if x = 0 and y = 0.

(3.23)

This function is sometimes called atan2 (x, y), and it is implemented in most programming
languages. Note that ϕ is undefined at the origin since a vector of length zero does not point
in any direction.

Given that complex numbers are isomorphic to real 2-vectors, we should be able to write
complex numbers in polar coordinates as well. Looking at (3.21), and replacing x and y with
a and b, we see that

z = a + i b = r (cos ϕ + i sin ϕ) . (3.24)

We can write this more compactly using Euler’s formula:

ei ϕ = cos ϕ + i sin ϕ =⇒ z = r ei ϕ . (3.25)
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This is illustrated in Figure 3.1. In this context, the angle ϕ is called the complex phase. It is of
extreme importance in quantum mechanics, as we shall see.

Exercise 3.7. Write 2 i−3 in polar coordinates.

Problem 3.8. Prove, using Euler’s formula, that
∣∣ei ϕ

∣∣ = 1, that is, the magnitude of the
complex number ei ϕ is 1. If z = r ei ϕ, what is |z|?

Problem 3.9. Prove Euler’s formula.

3.2 Linear Algebra

The most important and fundamental mathematical structure in quantum theory is the Hilbert
space, a type of complex vector space. In this section we will define Hilbert spaces and learn
about many important concept and results from linear algebra that apply to them.

3.2.1 Complex Vector Spaces

A real n-vector is an ordered list of n real numbers. Analogously, a complex n-vector is an
ordered list of n complex numbers. For example, a complex 2-vector with two complex
components Ψ1 and Ψ2 is written as:

|Ψ⟩ ≡
(

Ψ1

Ψ2

)
. (3.26)

The notation |Ψ⟩ is unique to quantum mechanics, and it is called bra-ket notation or some-
times Dirac notation. In this notation, we write a straight line | and an angle bracket ⟩, and
between them, a label. We will usually denote a general vector with the label Ψ; this label, and
its lowercase counterpart ψ, are very commonly used in quantum mechanics. However, we
can use whatever label we want to describe our vector – including letters, numbers, symbols,
or even whole words and sentences, for example:

|A⟩ , |β⟩ , |3⟩ , |♣⟩ , |Bob⟩ , |Schrödinger’s Cat Is Alive⟩ , . . . (3.27)

This is a great advantage of the bra-ket notation, as it allows us to be very descriptive in the
labels we choose for our vectors – which we can’t do with the notation v or v⃗ commonly used
for vectors in mathematics and physics.

A vector space V over a field8 F is a set of vectors equipped with two operations: addition of
vectors and multiplication of vector by scalar, where a scalar is any number from the field F.
Vector addition must satisfy the following conditions:

1. Closed – the sum of two vectors is another vector in the same space:

∀ |Ψ⟩ , |Φ⟩ ∈ V : |Ψ⟩+ |Φ⟩ ∈ V . (3.28)
8The field is usually taken to be R or C. Naturally, for a complex vector space, it will be C.
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2. Commutative – the order of vectors doesn’t matter:

∀ |Ψ⟩ , |Φ⟩ ∈ V : |Ψ⟩+ |Φ⟩ = |Φ⟩+ |Ψ⟩ . (3.29)

3. Associative – if three vectors are added, it doesn’t matter which two are added first:

∀ |Ψ⟩ , |Φ⟩ , |Θ⟩ ∈ V :
(
|Ψ⟩+ |Φ⟩

)
+ |Θ⟩ = |Ψ⟩+

(
|Φ⟩+ |Θ⟩

)
. (3.30)

4. Identity vector or zero vector – there is a (unique) vector9 0 which, when added to any
vector, does not change it:

∃0 ∈ V : ∀ |Ψ⟩ ∈ V : |Ψ⟩+ 0 = |Ψ⟩ . (3.31)

5. Inverse vector – for every vector there exists another (unique) vector such that the two
vectors sum to the zero vector:

∀ |Ψ⟩ ∈ V : ∃
(
− |Ψ⟩

)
∈ V : |Ψ⟩+

(
− |Ψ⟩

)
= 0. (3.32)

Furthermore, multiplication by a scalar must satisfy the following conditions:

1. Closed – the product of a vector and a scalar is a vector in the same space:

∀α ∈ F, ∀ |Ψ⟩ ∈ V : α |Ψ⟩ ∈ V . (3.33)

2. Associative – if two scalars are multiplied by a vector, it doesn’t matter whether we first
multiply the two scalars or we first multiply one of the scalars with the vector:

∀α, β ∈ F, ∀ |Ψ⟩ ∈ V : (αβ) |Ψ⟩ = α (β |Ψ⟩) . (3.34)

3. Distributive over addition of scalars:

∀α, β ∈ F, ∀ |Ψ⟩ ∈ V : (α + β) |Ψ⟩ = α |Ψ⟩+ β |Ψ⟩ . (3.35)

4. Distributive over addition of vectors:

∀α ∈ F, ∀ |Ψ⟩ , |Φ⟩ ∈ V : α (|Ψ⟩+ |Φ⟩) = α |Ψ⟩+ α |Φ⟩ . (3.36)

5. Identity scalar or unit scalar – there is a (unique) scalar 1 which, when multiplied by any

9Note that here we are using a slight abuse of notation by denoting the zero vector as the number 0, instead of
using bra-ket notation. The reason is that |0⟩ already has a special common meaning in quantum mechanics, as
we will see later; in the context of that special meaning, |0⟩ is not the zero vector.
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vector, does not change it:

∃1 ∈ F : ∀ |Ψ⟩ ∈ V : 1 |Ψ⟩ = |Ψ⟩ . (3.37)

We now define a 2-dimensional complex vector space, which we denote C2, as the space of
complex 2-vectors over C, with addition of vectors given by

|Ψ⟩ ≡
(

Ψ1

Ψ2

)
∈ C2, |Φ⟩ ≡

(
Φ1

Φ2

)
∈ C2 =⇒ |Ψ⟩+ |Φ⟩ =

(
Ψ1 + Φ1

Ψ2 + Φ2

)
, (3.38)

and multiplication of vector by scalar given by

|Ψ⟩ ≡
(

Ψ1

Ψ2

)
∈ C2, λ ∈ C =⇒ λ |Ψ⟩ =

(
λΨ1

λΨ2

)
. (3.39)

The n-dimensional complex vector space Cn is defined analogously. In this course, we will
mostly focus on C2 for simplicity, in particular when giving explicit examples.

Exercise 3.10. Let

|Ψ⟩ ≡
(

3 + i
−9

)
, |Φ⟩ ≡

(
i−1
−10 i

)
, α = 7 i−2, β = −4− 8 i . (3.40)

Calculate α |Ψ⟩+ β |Φ⟩.

Problem 3.11. Check that the addition and multiplication as defined above indeed satisfy all
of the required conditions for a vector space. You can do this just for C2, for simplicity.

3.2.2 Dual Vectors, Inner Products, Norms, and Hilbert Spaces

A dual vector is defined by writing the vector as a row instead of a column, and replacing each
component with its complex conjugate. We denote the dual vector of |Ψ⟩ as follows:

⟨Ψ| =
(

Ψ∗1 Ψ∗2
)

. (3.41)

In terms of notation, there is now an opposite angle bracket ⟨ on the left of the label, and
the straight line | is on the right. Addition and multiplication by a scalar are defined as for
vectors, simply replacing columns with rows. However, you may not add vectors and dual
vectors together – adding a row to a column is undefined!

If we are given a dual vector, we can take its dual to get a “normal” (column) vector. In this
case, the operation of taking the dual involves writing the vector as a column instead of a
row and taking the complex conjugates of the components. This means that the operation of
taking the dual is an involution – taking the dual of a vector twice gives back the same vector,
since (z∗)∗ = z.
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Using dual vectors, we may define the inner product. This product allows us to take a vector
and a dual vector and produce a (complex) number out of them, similarly to the dot product
of real vectors10. Importantly, the inner product only works for one vector and one dual
vector, not for two vectors or two dual vectors. To calculate it, we multiply the components of
both vectors one by one and add them up:

⟨Ψ|Φ⟩ =
(

Ψ∗1 Ψ∗2
)( Φ1

Φ2

)
= Ψ∗1Φ1 + Ψ∗2Φ2. (3.42)

In bra-ket notation, vectors |Ψ⟩ are called “kets” and dual vectors ⟨Ψ| are called “bras”. Then
the notation for ⟨Ψ|Φ⟩ is called a “bra(c)ket”.

We define the norm-squared of a vector by taking its inner product with its dual (“squaring” it):

∥Ψ∥2 ≡ ⟨Ψ|Ψ⟩ =
(

Ψ∗1 Ψ∗2
)( Ψ1

Ψ2

)
= |Ψ1|2 + |Ψ2|2 , (3.43)

where the magnitude-squared of a complex number z was defined in Section 3.1.3 as |z|2 ≡ z∗z.
Then we can define the norm as the square root of the norm-squared:

∥Ψ∥ ≡
√
∥Ψ∥2 =

√
⟨Ψ|Ψ⟩. (3.44)

Observe how taking the dual of a vector generalizes taking the complex conjugate of a number,
and taking the norm of a vector generalizes taking the magnitude of a number; indeed, for
1-dimensional vectors, these operations are the same!

A vector space with an inner product is called a Hilbert space, provided it is also a complete
metric space11 and that the inner product satisfies the same properties (which you will derive
in problems 3.13, 3.14, and 3.15) as the standard inner product on Cn. In particular, Cn itself is
a Hilbert space, but there are many other Hilbert spaces, some of them much more abstract.
The usual notation for a general Hilbert space isH.

10The dot product of the real vectors v ≡ (v1, v2) and w ≡ (w1, w2) in R2 is defined as v ·w ≡ v1w1 + v2w2. In
principle, this definition does secretly involve a dual (row) vector and a (column) vector, but since we do not need
to take the complex conjugate, we don’t really need to worry about dual vectors. However, it is important to note
that in real vector spaces with curvature, such as those used in general relativity, the dot product must be replaced
with a more complicated inner product which involves the metric, and it again becomes crucial to distinguish
vectors from dual vectors – which in this context are also called contravariant and covariant vectors respectively.

11A vector space is a complete metric space if whenever an infinite series of vectors |Ψi⟩ converges absolutely, that
is, the series of the norms of the vectors converges:

∞

∑
i=0
∥Ψi∥ < ∞, (3.45)

then the series of the vectors themselves converges as well, to some vector |Ψ⟩ in the Hilbert space:

∞

∑
i=0
|Ψi⟩ = |Ψ⟩ . (3.46)
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Exercise 3.12. Let

|Ψ⟩ ≡
(

7 + 7 i
−7− 2 i

)
, |Φ⟩ ≡

(
−2− 7 i

i

)
. (3.47)

Calculate ⟨Ψ|, ⟨Φ|, ∥Ψ∥, ∥Φ∥, ⟨Ψ|Φ⟩, and ⟨Φ|Ψ⟩.

Problem 3.13. Prove that the norm-squared ∥Ψ∥2 is always non-negative, and it is zero if and
only if |Ψ⟩ is the zero vector, that is, the vector whose components are all zero. In other words,
the inner product is positive-definite. As a corollary, explain why we must take the complex
conjugate of the components when we convert a vector to a dual vector. (What would have
happened if we didn’t?)

Problem 3.14. Prove that ⟨Φ|Ψ⟩ = ⟨Ψ|Φ⟩∗, that is, if we swap the order of vectors in the
inner product we get the complex conjugate of the original product. Thus, unlike the dot
product, the inner product on Cn is not symmetric. However, it is conjugate-symmetric, and in
particular, the magnitude of the inner product remains the same, since |z| = |z∗|.

Problem 3.15. Prove that if α, β ∈ C and |Ψ⟩ , |Φ⟩ , |Θ⟩ ∈ Cn then

⟨Ψ| (α |Φ⟩+ β |Θ⟩) = α⟨Ψ|Φ⟩+ β⟨Ψ|Θ⟩, (3.48)

that is, the inner product is linear in its second argument.

3.2.3 Orthonormal Bases

An orthonormal basis of Cn is a set of n non-zero vectors {|B1⟩ , . . . , |Bn⟩} – which we will
usually denote |Bi⟩ for short, with the implication that i ∈ {1, . . . , n} – such that:

1. They span Cn, which means that any vector |Ψ⟩ ∈ Cn can be written uniquely as a linear
combination of the basis vectors, that is, a sum of the vectors |Bi⟩ multiplied by some
complex numbers λi ∈ C:

|Ψ⟩ =
n

∑
i=1

λi |Bi⟩ . (3.49)

This property ensures that the basis can be used to define any single vector in the space
Cn, not just part of that space.
As a simple example, in R3 the vector x̂ ≡ (1, 0, 0) pointing along the x axis and the
vector ŷ ≡ (0, 1, 0) pointing along the y axis span the xy plane, but not all of R3. To
get a basis for all of R3, we must add an appropriate third vector, such as the vector
ẑ ≡ (0, 0, 1) pointing along the z axis. (But other vectors, such as (1, 2, 3), would work
as well.)

2. They are linearly independent, in that if the zero vector is a linear combination of the basis
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vectors, then the coefficients in the linear combination must all be zero:

n

∑
i=1

λi |Bi⟩ = 0 =⇒ λi = 0, ∀i. (3.50)

Linear independence means (as you will show in Problem 3.17) that no vector in the set
can be written as a linear combination of the other vectors in the set. If we could have
done so, then that vector would have been redundant, and we would have needed to
remove it in order to obtain a basis.
As a simple example, the set composed of x̂, ŷ, and (1, 2, 0) is linearly dependent, since
(1, 2, 0) = x̂ + 2ŷ, but the set {x̂, ŷ, ẑ} is linearly independent.

3. They are all orthogonal to each other, that is, the inner product of any two different
vectors evaluates to zero:

⟨Bi|Bj⟩ = 0, ∀i ̸= j. (3.51)

4. They are all unit vectors, that is, they have a norm (and norm-squared) of 1:

∥Bi∥2 = ⟨Bi|Bi⟩ = 1, ∀i. (3.52)

In fact, properties 3 and 4 may be expressed more compactly as:

⟨Bi|Bj⟩ = δij =

{
0 if i ̸= j,

1 if i = j,
(3.53)

where δij is called the Kronecker delta. If this combined property is satisfied, we say that the
vectors are orthonormal12.

These requirements become much simpler in n = 2 dimensions. An orthonormal basis for C2

is a set of 2 non-zero vectors |B1⟩ , |B2⟩ such that:

1. They span C2, which means that any vector |Ψ⟩ ∈ C2 can be written as a linear combi-
nation of the basis vectors:

|Ψ⟩ = λ1 |B1⟩+ λ2 |B2⟩ , (3.54)

for a unique choice of λ1, λ2 ∈ C.

2. They are linearly independent, which means that we cannot write one in terms of a
scalar times the other, i.e.:

|B1⟩ ̸= λ |B2⟩ , λ ∈ C. (3.55)

3. They are orthonormal to each other, that is, the inner product between them evaluates

12Actually, bases don’t have to be orthonormal in general, but in quantum mechanics they always are, for
reasons that will become clear later.
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to zero and both of them have unit norm:

⟨B1|B2⟩ = 0, (3.56)

∥B1∥2 = ⟨B1|B1⟩ = 1, ∥B2∥2 = ⟨B2|B2⟩ = 1. (3.57)

A very important basis, the standard basis of C2, is defined as:

|11⟩ ≡
(

1
0

)
, |12⟩ ≡

(
0
1

)
. (3.58)

We similarly define the standard basis of Cn for any n in the obvious way.

Problem 3.16. Show that the standard basis vectors satisfy the properties above.

Problem 3.17. Show that linear independence means that no vector in the basis can be written
as a linear combination of the other vectors in the basis.

Problem 3.18. Any basis which is orthogonal but not orthonormal, that is, does not satisfy
property 4, can be made orthonormal by normalizing each basis vector, that is, dividing it by
its norm:

|Bi⟩ 7→
|Bi⟩
∥Bi∥

. (3.59)

Show that if an orthogonal but not orthonormal basis satisfies properties 1-3, then it still
satisfies them after normalizing it in this way.

Exercise 3.19. Consider the complex vector

|Ψ⟩ ≡
(

1 + i
2 + 2 i

)
. (3.60)

Normalize |Ψ⟩ and find another complex vector |Φ⟩ such that the set {|Ψ⟩ , |Φ⟩} is a basis of
C2 (i.e. satisfies all of the properties above).

Problem 3.20. Find an orthonormal basis of C3 which is not the standard basis or a scalar
multiple of the standard basis. Show that it is indeed an orthonormal basis.

3.2.4 Matrices and the Adjoint

A matrix in n dimensions is an n× n array13 of (complex) numbers. In n = 2 dimensions we
have

A =

(
A11 A12

A21 A22

)
, A11, A12, A21, A22 ∈ C. (3.61)

13In fact, matrices don’t have to be square, they can have a different number of rows and columns, that is, n×m
where n ̸= m; but non-square matrices are generally not of much interest in quantum mechanics.
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A matrix can act on a vector to produce another vector. If it’s a ket (a vertical/column vector),
the result is another ket. If it’s a bra (a horizontal/row dual vector), the result is another bra.

If the matrix acts on a ket, then it must act from the left, and the element at row i of the
resulting ket is obtained by taking the inner product of row i of the matrix with the ket:

A |Ψ⟩ =
(

A11 A12

A21 A22

)(
Ψ1

Ψ2

)
=

(
A11Ψ1 + A12Ψ2

A21Ψ1 + A22Ψ2

)
. (3.62)

If the matrix acts on a bra, then it must act from the right, and the element at column i of the
resulting bra is obtained by taking the inner product of column i of the matrix with the bra:

⟨Ψ| A =
(

Ψ∗1 Ψ∗2
)( A11 A12

A21 A22

)
=
(

Ψ∗1 A11 + Ψ∗2 A21 Ψ∗1 A12 + Ψ∗2 A22

)
. (3.63)

Note that the dual vector ⟨Ψ| A is not the dual of the vector A |Ψ⟩, as you can see by taking
the dual of (3.62). However, we can define the adjoint of a matrix by transposing rows into
columns and then taking the complex conjugate of all the components:

A† =

(
A∗11 A∗21
A∗12 A∗22

)
, (3.64)

where the notation † for the adjoint is called dagger. Then the vector dual to A |Ψ⟩ is ⟨Ψ| A†,
as you will check in Problem 3.22. Actually, taking the adjoint of a matrix is exactly the same
operation as taking the dual of a vector! The only difference is that for a matrix we have n
columns to transpose into rows, while for a vector we only have one. Therefore, we have

|Ψ⟩† = ⟨Ψ| , ⟨Ψ|† = |Ψ⟩ , (3.65)

and we get the following nice relation:

(A |Ψ⟩)† = ⟨Ψ| A†. (3.66)

The identity matrix, which we will write simply as 1, is:

1 =

(
1 0
0 1

)
. (3.67)

Acting with it on any vector or dual vector does not change it: 1 |Ψ⟩ = |Ψ⟩.

Problem 3.21. To rotate (real) vectors in R2 by an angle θ, we take their product with the (real)
rotation matrix:

R (θ) ≡
(

cos θ − sin θ

sin θ cos θ

)
. (3.68)
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A. Calculate the matrix R (π/3).

B. Write down the vector resulting from rotating (−5, 9) by π/3 radians, in both Cartesian
and polar coordinates.

C. Repeat (B) for rotating a general 2-vector (x, y) by a general angle θ.

D. Find the mapping between rotations of 2-vectors in R2 and rotations of complex numbers
in C, and explain what is the analogue of the rotation matrix in terms of complex numbers.

Problem 3.22. Show that the vector dual to A |Ψ⟩ is indeed ⟨Ψ| A†.

Exercise 3.23. Let

A ≡
(

1 + 5 i 2
3− 7 i 4 + 8 i

)
, ⟨Ψ| ≡

(
i−2 i−3

)
. (3.69)

Calculate A |Ψ⟩ and ⟨Ψ| A† separately, and then check that they are the dual of each other.

Problem 3.24. Show that
(

A†)†
= A. This means that the adjoint operation is an involution,

exactly like complex conjugation and taking the dual of a vector. In fact, all three are the
exact same operation. By choosing an appropriate matrix, explain how taking the complex
conjugate of a number is a special case of taking the adjoint of a matrix.

Problem 3.25. Show that the action of a matrix on a vector is linear, that is,

A (α |Ψ⟩+ β |Φ⟩) = αA |Ψ⟩+ βA |Φ⟩ . (3.70)

3.2.5 The Outer Product

We have seen that vectors and dual vectors may be combined to generate a complex number
using the inner product. We can similarly combine a vector and a dual vector to generate a
matrix, using the outer product. Given

⟨Ψ| ≡
(

Ψ∗1 Ψ∗2
)

, |Φ⟩ ≡
(

Φ1

Φ2

)
, (3.71)

we define the outer product as the matrix whose component at row i, column j is given by
multiplying the component at row i of |Φ⟩ with the component at column j of ⟨Ψ|:

|Φ⟩⟨Ψ| =
(

Φ1

Φ2

)(
Ψ∗1 Ψ∗2

)
=

(
Ψ∗1Φ1 Ψ∗2Φ1

Ψ∗1Φ2 Ψ∗2Φ2

)
. (3.72)

Note how when taking an inner product the straight lines | face each other: ⟨Ψ|Φ⟩, while
when taking an outer product the angle brackets ⟩⟨ face each other. This shows some of the
elegance of the Dirac notation! A bra-ket is an inner product, while a ket-bra is an outer
product.

We can assign a rank to scalars, vectors, and matrices:
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• Scalars have rank 0 since they have n0 = 1 component,

• Vectors have rank 1 since they have n1 = n components,

• Matrices have rank 2 since they have n2 components.

Then the inner product reduces the rank of the vectors from 1 to 0, while the outer product
increases the rank from 1 to 2.

Exercise 3.26. Calculate the outer product |Ψ⟩⟨Φ| for

|Ψ⟩ =
(

1
2 + i

)
, |Φ⟩ =

(
3− i

4 i

)
. (3.73)

Remember that when writing the dual vector, the components are complex conjugated!

3.2.6 The Completeness Relation

Let us write the vector |Ψ⟩ as a linear combination of basis vectors:

|Ψ⟩ =
n

∑
i=1

λi |Bi⟩ . (3.74)

Taking the inner product of the above equation with ⟨Bj| and using the fact that the basis
vectors are orthonormal,

⟨Bi|Bj⟩ = δij =

{
0 if i ̸= j,

1 if i = j,
(3.75)

we get:

⟨Bj|Ψ⟩ =
n

∑
i=1

λi⟨Bj|Bi⟩ =
n

∑
i=1

λiδij = λj, (3.76)

since all of the terms in the sum vanish except the one with i = j. Therefore, the coefficients
λi in (3.74) are given, for any vector |Ψ⟩ and for any basis |Bi⟩, by

λi = ⟨Bi|Ψ⟩. (3.77)

Now, since λi is a scalar, and multiplication by a scalar is commutative (unlike the inner and
outer products!), we can move it to the right in (3.74):

|Ψ⟩ =
n

∑
i=1
|Bi⟩ λi. (3.78)

We haven’t actually done anything here; where to write the scalar, on the left or right of the
vector, is completely arbitrary – it’s just conventional to write it on the left. Then, replacing λi
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with ⟨Bi|Ψ⟩ as per (3.77), we get

|Ψ⟩ =
n

∑
i=1
|Bi⟩⟨Bi|Ψ⟩. (3.79)

To make this even more suggestive, let us add parentheses:

|Ψ⟩ =
(

n

∑
i=1
|Bi⟩⟨Bi|

)
|Ψ⟩. (3.80)

Note that what we did here is go from a vector |Bi⟩ times a complex number ⟨Bi|Ψ⟩ to a
matrix |Bi⟩⟨Bi| times a vector |Ψ⟩, for each i. The fact that these two different products are
actually equal to one another (as you will prove in Problem 3.28) is not at all trivial, but it
is one of the main reasons we like to use bra-ket notation! The notation now suggests (see
Problem 3.29) that

n

∑
i=1
|Bi⟩⟨Bi| = 1, (3.81)

where |Bi⟩⟨Bi| is the outer product defined above, and the 1 on the right-hand side is the
identity matrix. This extremely useful result is called the completeness relation.

In C2, we simply have
|B1⟩⟨B1|+ |B2⟩⟨B2| = 1. (3.82)

Exercise 3.27. Given the basis

|B1⟩ =
1√
2

(
1
1

)
, |B2⟩ =

1√
2

(
1
−1

)
, (3.83)

first show that it is indeed an orthonormal basis, and then show that it satisfies the complete-
ness relation given by (3.82).

Problem 3.28. A. Provide a rigorous proof that, for any three vectors |A⟩ , |B⟩ , |C⟩ ∈ Cn and
for any dimension n, the following equality is satisfied:

|A⟩⟨B|C⟩ =
(
|A⟩⟨B|

)
|C⟩. (3.84)

In other words, the product ket-bra-ket is associative. On the left-hand side we have a vector
|A⟩ time a scalar ⟨B|C⟩ (which is the result of an inner product), while on the right-hand side
we have a matrix |A⟩⟨B| (which is the result of an outer product) times a vector |C⟩, but the
two sides are nonetheless equal.

B. Use the associative property to prove that

|Ψ⟩ =
n

∑
i=1
|Bi⟩⟨Bi|Ψ⟩ =

(
n

∑
i=1
|Bi⟩⟨Bi|

)
|Ψ⟩. (3.85)
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Problem 3.29. Importantly, we didn’t “divide (3.80) by |Ψ⟩” to get (3.81)! You can’t do that
with matrices and vectors. Instead, (3.81) follows from the fact that any matrix A which
satisfies |Ψ⟩ = A |Ψ⟩ for every vector |Ψ⟩must necessarily be the identity matrix. Prove this.

3.2.7 Representing Vectors in Different Bases

Let us consider a complex n-vector defined as follows:

|Ψ⟩ ≡

 Ψ1
...

Ψn

 , Ψi ∈ C. (3.86)

Given an orthonormal basis |Bi⟩, we have seen that we can write |Ψ⟩ as a linear combination
of the basis vectors:

|Ψ⟩ =
n

∑
i=1

λi |Bi⟩ . (3.87)

The coefficients λi ∈ C depend on |Ψ⟩ and on the basis vectors, as we showed in (3.77):

λi ≡ ⟨Bi|Ψ⟩ =⇒ |Ψ⟩ =
n

∑
i=1
|Bi⟩⟨Bi|Ψ⟩ (3.88)

With these coefficients, we can represent the vector |Ψ⟩ in the basis |Bi⟩. This representation will
be a vector of the same dimension n, with the components being the coefficients λi = ⟨Bi|Ψ⟩,
and will be denoted as follows:

|Ψ⟩
∣∣∣∣∣

B

≡

 ⟨B1|Ψ⟩
...

⟨Bn|Ψ⟩

 =

 λ1
...

λn

 . (3.89)

We say that λi are the coordinates of |Ψ⟩ with respect to the basis |Bi⟩.
The correct way to understand the meaning of a vector is as an abstract entity, like an arrow
in space, which does not depend on any particular basis – it is just there. However, if we want
to do concrete calculations with a vector, we must somehow represent it numerically. This is
done by choosing a basis and writing down the coordinates of the vector in that basis.

Therefore, whenever we define a vector using its components – as we have been doing
throughout this chapter – there is always a specific basis in which the vector is represented,
with the components being the coordinates in this basis. If no particular basis is explicitly
specified, it is implied that it is the standard basis. But no representation is better than
the other; we usually choose whatever basis is most convenient to work with. In quantum
mechanics, we often choose a basis defined by some physical observable, as we will see below.
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Exercise 3.30. Let a vector |Ψ⟩ be represented in the standard basis as

|Ψ⟩ ≡
(

1− 9 i
7 i−2

)
. (3.90)

Find its representation |Ψ⟩
∣∣

B in terms of the orthonormal basis

|B1⟩ =
1√
2

(
1
1

)
, |B2⟩ =

1√
2

(
1
−1

)
. (3.91)

Problem 3.31. Prove that the inner product (and thus also the norm) is independent of the
choice of basis. That is, for any two vectors |Ψ⟩ and |Φ⟩ and any two bases |Bi⟩ and |Ci⟩,

⟨Ψ|Φ⟩
∣∣∣∣∣

B

= ⟨Ψ|Φ⟩
∣∣∣∣∣
C

. (3.92)

3.2.8 Change of Basis

Let the representation of a vector |Ψ⟩ in the basis |Bi⟩ be

|Ψ⟩
∣∣∣∣∣

B

=

 ⟨B1|Ψ⟩
...

⟨Bn|Ψ⟩

 =
n

∑
i=1
|Bi⟩⟨Bi|Ψ⟩. (3.93)

Given a different basis |Ci⟩, we have a different representation

|Ψ⟩
∣∣∣∣∣
C

=

 ⟨C1|Ψ⟩
...

⟨Cn|Ψ⟩

 =
n

∑
i=1
|Ci⟩⟨Ci|Ψ⟩. (3.94)

To find a relation between the two representations, we use the completeness relation, (3.81):

n

∑
j=1
|Bj⟩⟨Bj| = 1. (3.95)

Inserting it in the middle of the inner product representing the coordinates ⟨Ci|Ψ⟩, we get
that for all i

⟨Ci|Ψ⟩ = ⟨Ci|
(

n

∑
j=1
|Bj⟩⟨Bj|

)
|Ψ⟩ =

n

∑
j=1
⟨Ci|Bj⟩⟨Bj|Ψ⟩. (3.96)
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Again, the Dirac notation proves to be pretty convenient! This relation can be expressed in
matrix form as follows: ⟨C1|Ψ⟩

...
⟨Cn|Ψ⟩

 =

 ⟨C1|B1⟩ · · · ⟨C1|Bn⟩
...

. . .
...

⟨Cn|B1⟩ · · · ⟨Cn|Bn⟩


 ⟨B1|Ψ⟩

...
⟨Bn|Ψ⟩

 , (3.97)

or in other words,

|Ψ⟩
∣∣∣∣∣
C

= PC←B |Ψ⟩
∣∣∣∣∣

B

, (3.98)

where the change-of-basis matrix from |Bi⟩ to |Ci⟩, denoted PC←B, is defined as

PC←B ≡

 ⟨C1|B1⟩ · · · ⟨C1|Bn⟩
...

. . .
...

⟨Cn|B1⟩ · · · ⟨Cn|Bn⟩

 . (3.99)

Exercise 3.32. Consider the two bases

|B1⟩ =
1√
2

(
1
1

)
, |B2⟩ =

1√
2

(
1
−1

)
, (3.100)

|C1⟩ =
1√
2

(
1
i

)
, |C2⟩ =

1√
2

(
− i
−1

)
. (3.101)

A. The vector |Ψ⟩ is represented in the standard basis as

|Ψ⟩ =
(
−3

2 + i

)
. (3.102)

Find its representations in the bases |Bi⟩ and |Ci⟩.
B. Find the change-of-basis matrix PC←B. Calculate PC←B |Ψ⟩

∣∣
B and verify that the result is

equal to the expression you obtained in (A) for |Ψ⟩
∣∣
Ci

.

3.2.9 Multiplication and Inverse of Matrices

The matrix product of two matrices is another matrix. The element of that matrix at row i,
column j is calculated by taking the inner product of row i of the left matrix with column j of
the right matrix:

AB =

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
. (3.103)
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Observe that the action of a matrix on a vector, and the inner and outer products of vectors,
are all just special cases of matrix multiplication – where a ket is a matrix with only one
column, and a bra is a matrix with only one row!

Given a matrix A, if there exists another matrix A−1 such that

A−1A = AA−1 = 1, (3.104)

then the matrix A is called invertible and A−1 is called its inverse matrix. Note that
(

A−1)−1
=

A, so the operation of taking the inverse is an involution. Sometimes matrices do not have an
inverse; such matrices are called singular.

Exercise 3.33. Calculate the products AB and BA where:

A ≡
(
−1 3
−6 i 2 i−1

)
, B ≡

(
9− 8 i 7

4 i −2 i

)
. (3.105)

Problem 3.34. Find a general formula for the inverse of a 2× 2 matrix by taking

A ≡
(

a b
c d

)
, A−1 ≡

(
e f
g h

)
, (3.106)

and solving for e, f , g, h in terms of a, b, c, d.

Exercise 3.35. Find the inverse of the matrix

A ≡
(

1 2− 4 i
− i −2

)
. (3.107)

You can use the formula you found in Problem 3.34.

Problem 3.36. Show that (AB)† = B† A† and (AB)−1 = B−1A−1 for any two matrices A and
B.

Problem 3.37. Matrix multiplication is not commutative in general. That is, for two arbitrary
matrices A and B, it is not in general true that AB = BA. Find an example of two matrices
which commute, and an example of two matrices which do not commute. In each case, show
that they indeed commute or don’t commute.

Problem 3.38. Show that multiplying by a scalar λ ∈ C is the same as multiplying by a matrix
with all of its elements equal to zero except for the elements on the diagonal, which are all
equal to λ:

λA =

(
λ 0
0 λ

)
A. (3.108)

This is also known as a scalar matrix.

Problem 3.39. Given two bases |Bi⟩ and |Ci⟩, show that the change-of-basis matrix PB←C is
the inverse of the change-of-basis matrix in the other direction, PC←B.
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3.2.10 Matrices Inside Inner Products

Since A |Φ⟩ is itself a vector, we may calculate the inner product of that vector with the dual
vector ⟨Ψ|, which as usual gives us a complex number:

⟨Ψ|A|Φ⟩ =
(

Ψ∗1 Ψ∗2
)( A11 A12

A21 A22

)(
Φ1

Φ2

)
= Ψ∗1 A11Φ1 + Ψ∗2 A21Φ1 + Ψ∗1 A12Φ2 + Ψ∗2 A22Φ2.

If we take the dual of A |Φ⟩ we get ⟨Φ| A†, as you proved in Problem 3.22. Thus, inverting
the order of the inner product, we get

⟨Φ|A†|Ψ⟩ =
(

Φ∗1 Φ∗2
)( A∗11 A∗21

A∗12 A∗22

)(
Ψ1

Ψ2

)
= Ψ1A∗11Φ∗1 + Ψ2A∗21Φ∗1 + Ψ1A∗12Φ∗2 + Ψ2A∗22Φ∗2 .

This is, of course, the complex conjugate of ⟨Ψ|A|Φ⟩, since inverting the order of the inner
product results in the complex conjugate. In other words, we have the relation

⟨Ψ|A|Φ⟩∗ = ⟨Φ|A†|Ψ⟩. (3.109)

Taking the complex conjugate reverses the order of the inner product, and also replaces the
matrix with its adjoint.

Exercise 3.40. Calculate the inner product ⟨Ψ|A|Φ⟩ where

|Ψ⟩ =
(

5 + 2 i
−3 i

)
, A =

(
9 8 i
6 i 5− 4 i

)
, |Φ⟩ =

(
3 + 4 i

2

)
. (3.110)

3.2.11 Eigenvalues and Eigenvectors

If the matrix A, acting on the (non-zero) vector |Ψ⟩, results in a scalar multiple of |Ψ⟩:

A |Ψ⟩ = λ |Ψ⟩ , λ ∈ C, (3.111)

then we call |Ψ⟩ an eigenvector of A and λ its eigenvalue. Note that |Ψ⟩ cannot be the zero
vector, but λ can be zero.

For example, if

A =

(
1 0
0 −1

)
, (3.112)

then it’s easy to see that

|Ψ⟩ =
(

1
0

)
(3.113)
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is an eigenvector with eigenvalue +1 and

|Φ⟩ =
(

0
1

)
(3.114)

is an eigenvector with eigenvalue −1:

A |Ψ⟩ = |Ψ⟩ , A |Φ⟩ = − |Φ⟩ . (3.115)

Exercise 3.41. The matrix

A ≡
(

1 2
2 1

)
(3.116)

has two eigenvectors. Find them and their corresponding eigenvalues.

Problem 3.42. Prove that, if |Ψ⟩ is an eigenvector of a matrix A, then α |Ψ⟩ is also an eigen-
vector of A for any α ∈ C, and it has the same eigenvalue.

3.2.12 Hermitian Matrices

A matrix A is called Hermitian if it’s equal to its adjoint:

A = A†. (3.117)

Thus, it is sometimes also referred to as a self-adjoint matrix. For such a matrix, we have that

⟨Ψ|A|Φ⟩∗ = ⟨Φ|A|Ψ⟩. (3.118)

A Hermitian matrix is analogous to a real number, since z = z∗ implies that z is real.

The eigenvalues of a Hermitian matrices must all be real. To see this, let λ be an eigenvalue of
the Hermitian matrix A with the eigenvector |Ψ⟩:

A |Ψ⟩ = λ |Ψ⟩ . (3.119)

Then we can take the inner product of both sides with ⟨Ψ|:

⟨Ψ|A|Ψ⟩ = ⟨Ψ|λ|Ψ⟩ = λ⟨Ψ|Ψ⟩ = λ ∥Ψ∥2 , (3.120)

where were able to move λ out of the inner product because it’s just a number. From (3.118),
we have:

⟨Ψ|A|Ψ⟩ = ⟨Ψ|A|Ψ⟩∗, (3.121)

so ⟨Ψ|A|Ψ⟩ is real. Since ∥Ψ∥2 is also real – and non-zero, since |Ψ⟩ is an eigenvector, so by
definition it cannot be the zero vector – we conclude that λ must be real.

Now, let |Ψ⟩ and |Φ⟩ be two eigenvectors of A corresponding to different eigenvalues λ and
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µ respectively:
A |Ψ⟩ = λ |Ψ⟩ , A |Φ⟩ = µ |Φ⟩ , λ ̸= µ. (3.122)

Let us take the inner product of the first equation with ⟨Φ| and of the second equation with
⟨Ψ|:

⟨Φ|A|Ψ⟩ = ⟨Φ|λ|Ψ⟩ = λ⟨Φ|Ψ⟩, (3.123)

⟨Ψ|A|Φ⟩ = ⟨Ψ|µ|Φ⟩ = µ⟨Ψ|Φ⟩. (3.124)

From (3.118), the first equation is the complex conjugate of the second equation. Since λ must
be real – as we just proved – we get

µ⟨Ψ|Φ⟩ = (λ⟨Φ|Ψ⟩)∗ = λ⟨Ψ|Φ⟩. (3.125)

Seeing that λ ̸= µ by our assumption, this equation can only be true if

⟨Ψ|Φ⟩ = 0. (3.126)

In other words, eigenvectors of a Hermitian matrix corresponding to different eigenvalues
are orthogonal. Now, since an eigenvector multiplied by a scalar is still an eigenvector, the
eigenvectors |Ψ⟩ and |Φ⟩ can be divided by their norms, so that they are not only orthogonal
but also orthonormal.

Moreover, one can prove that for any Hermitian matrix A in Cn, there is an orthonormal
basis of Cn consisting of eigenvectors of A. Such a basis is called an orthonormal eigenbasis.
The proof requires some slightly more advanced tools from linear algebra, so we won’t write
it here. However, this theorem is extremely important in quantum theory. As we will see,
Hermitian matrices represent physical observables in quantum theory, and their eigenvalues
correspond to the possible values obtained by performing measurements on these observables.
The fact that there is an orthonormal basis of eigenvectors will prove very useful for studying
observables in quantum theory.

Problem 3.43. Let A and B be Hermitian matrices. Under what conditions is the product AB
Hermitian?

Exercise 3.44. Consider the matrix

A ≡
(

0 2 i
c 0

)
. (3.127)

A. Find the value of c for which A is a Hermitian matrix.

B. Find the eigenvalues of A with the value of c that you found in (A).

C. Find an orthonormal eigenbasis of A with the value of c that you found in (A). Show that it
is indeed orthonormal.

Problem 3.45. Find the most general 2× 2 Hermitian matrix by demanding that A = A† and
finding conditions on the components of A.
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3.2.13 Unitary Matrices

A matrix U is called unitary if its adjoint is also its inverse:

U−1 = U† =⇒ UU† = U†U = 1. (3.128)

A unitary matrix is analogous to a complex number with norm 1, since such a number satisfies
z∗z = zz∗ = |z|2 = 1.

Acting with a unitary matrix on two vectors preserves their inner product. To see this, consider
a unitary matrix U and two vectors |Ψ⟩ and |Φ⟩. If we act with U on both vectors, we get
U |Ψ⟩ and U |Φ⟩. Taking the bra of the ket U |Ψ⟩, we obtain

(U |Ψ⟩)† = ⟨Ψ|U†. (3.129)

If we take the inner product of U |Ψ⟩ and U |Φ⟩, we get

⟨Ψ|U†U|Φ⟩ = ⟨Ψ|Φ⟩, (3.130)

since U†U = 1. Therefore, the inner product of these two vectors is the same before and after
acting on them with U.

Now, let λ be an eigenvalue of the unitary matrix U with the eigenvector |Ψ⟩:

U |Ψ⟩ = λ |Ψ⟩ . (3.131)

Taking the adjoint of both sides, we get

⟨Ψ|U† = ⟨Ψ| λ∗. (3.132)

Multiplying both equations together, we have

⟨Ψ|U†U |Ψ⟩ = ⟨Ψ| λ∗λ |Ψ⟩ . (3.133)

On the left-hand side U†U = 1, and on the right-hand side λ∗λ = |λ|2, so

⟨Ψ|Ψ⟩ = |λ|2 ⟨Ψ|Ψ⟩ =⇒ ∥Ψ∥2 = |λ|2 ∥Ψ∥2 . (3.134)

Since |Ψ⟩ is an eigenvector, it is not the zero vector, and ∥Ψ∥2 ̸= 0. Hence, we conclude that
the eigenvalues of a unitary matrix must all have magnitude 1. This means that they lie on
the unit circle of the complex plane, and are of the form z = ei ϕ for some ϕ ∈ R.

As with Hermitian matrices, eigenvectors of a unitary matrix corresponding to different
eigenvalues are orthogonal (you will prove this in Problem 3.48), and you can always find an
orthonormal eigenbasis of eigenvectors of a unitary matrix.

Problem 3.46. Find the most general 2× 2 unitary matrix by demanding that U−1 = U† or
UU† = U†U = 1 and finding conditions on the components of U.

39



Problem 3.47. Find three 2× 2 matrices that are both Hermitian and unitary (other than the
identity matrix).

Problem 3.48. Prove that eigenvectors of a unitary matrix corresponding to different eigen-
values are orthogonal.

Problem 3.49. Prove that the columns of a unitary matrix, treated as kets, form an orthonormal
basis on Cn. Then prove that the same is true for the rows of a unitary matrix, treated as bras.

3.2.14 Normal Matrices

A normal matrix is a matrix A which satisfies A† A = AA†. Observe that a normal matrix is
analogous to a complex number z, since such a number trivially satisfies z∗z = zz∗. It is easy
to see that Hermitian matrices, which satisfy A† = A, and unitary matrices, which satisfy
A† = A−1, are both special cases of normal matrices.

If A is normal and all of its eigenvalues are real, then it is Hermitian. If A normal and all
of its eigenvalues have unit magnitude, then it is unitary. Furthermore, it turns out that the
condition that the matrix has an orthonormal eigenbasis applies not just to Hermitian and
unitary matrices, but in general to any normal matrix; in fact, it is true if and only if the
matrix is normal.

Problem 3.50. Let A and B be normal matrices. Under which condition are both AB and
A + B also normal?

3.2.15 Representing Matrices in Different Bases

In Section 3.2.7 we saw that vectors are abstract entities which can have different representa-
tions in different bases. The same is true for matrices. Consider a matrix A and a basis |Bi⟩.
Inserting the completeness relation (3.81) twice, one time on each side of A, we get:

A =

(
n

∑
i=1
|Bi⟩⟨Bi|

)
A

(
n

∑
j=1
|Bj⟩⟨Bj|

)

=
n

∑
i=1

n

∑
j=1
|Bi⟩⟨Bi|A|Bj⟩⟨Bj|

=
n

∑
i=1

n

∑
j=1

(
Aij
)

B |Bi⟩⟨Bj|,

where14 (
Aij
)

B ≡ ⟨Bi|A|Bj⟩ ∈ C, i, j ∈ {1, . . . , n} (3.135)

are the coordinates of A in the basis |Bi⟩.

14Note that we could move
(

Aij

)
B

to the left since it is a scalar.
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We have obtained a sum over outer products of the form |Bi⟩⟨Bj|. Recall that the outer product
of two vectors is a matrix; thus |Bi⟩⟨Bj| can be thought of as “basis matrices”, in analogy
with basis vectors. The representation of A in terms of a linear combination of these “basis
matrices” is called the outer product representation of A, and it is very useful in quantum theory.

We can also write this representation in matrix form as

(A)B =

 ⟨B1|A|B1⟩ · · · ⟨B1|A|Bn⟩
...

. . .
...

⟨Bn|A|B1⟩ · · · ⟨Bn|A|Bn⟩

 . (3.136)

In another basis |Ci⟩, the matrix A will have the representation

(A)C =
n

∑
i=1

n

∑
j=1

(
Aij
)

C |Ci⟩⟨Cj| =

 ⟨C1|A|C1⟩ · · · ⟨C1|A|Cn⟩
...

. . .
...

⟨Cn|A|C1⟩ · · · ⟨Cn|A|Cn⟩

 , (3.137)

where now the coordinates
(

Aij
)

C are given by(
Aij
)

C ≡ ⟨Ci|A|Cj⟩ ∈ C, i, j ∈ {1, . . . , n} . (3.138)

Inserting the completeness relation (3.81) into the coordinates twice, similarly to what we did
above, we get

⟨Ci|A|Cj⟩ = ⟨Ci|
(

n

∑
k=1
|Bk⟩⟨Bk|

)
A

(
n

∑
ℓ=1
|Bℓ⟩⟨Bℓ|

)
|Cj⟩

=
n

∑
k=1

n

∑
ℓ=1
⟨Ci|Bk⟩⟨Bk|A|Bℓ⟩⟨Bℓ|Cj⟩.

Problem 3.51. Show that this relation can be written in matrix form as follows: ⟨C1|A|C1⟩ · · · ⟨C1|A|Cn⟩
...

. . .
...

⟨Cn|A|C1⟩ · · · ⟨Cn|A|Cn⟩

 =

=

 ⟨C1|B1⟩ · · · ⟨C1|Bn⟩
...

. . .
...

⟨Cn|B1⟩ · · · ⟨Cn|Bn⟩


 ⟨B1|A|B1⟩ · · · ⟨B1|A|Bn⟩

...
. . .

...
⟨Bn|A|B1⟩ · · · ⟨Bn|A|Bn⟩


 ⟨B1|C1⟩ · · · ⟨B1|Cn⟩

...
. . .

...
⟨Bn|C1⟩ · · · ⟨Bn|Cn⟩

 ,

and thus the relation between the representations of A in different bases is given by

(A)C = PC←B (A)B PB←C, (3.139)
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where

PC←B ≡

 ⟨C1|B1⟩ · · · ⟨C1|Bn⟩
...

. . .
...

⟨Cn|B1⟩ · · · ⟨Cn|Bn⟩

 (3.140)

is the change-of-basis matrix (3.99), and PB←C = P−1
C←B. This is analogous to the relation

between vectors in different bases, |Ψ⟩
∣∣∣
C
= PC←B |Ψ⟩

∣∣∣
B

.

Problem 3.52. Let U be a unitary matrix and let |Bi⟩ be an orthonormal basis.

A. Prove that |Ci⟩ ≡ U |Bi⟩ is also an orthonormal basis.

B. Prove that U has the outer product representation

U =
n

∑
i=1
|Ci⟩ ⟨Bi| . (3.141)

C. Conversely, prove that if |Bi⟩ and |Ci⟩ are two arbitrary orthonormal bases, then the matrix
U defined by (3.141) is unitary.

3.2.16 Diagonalizable Matrices

A diagonal matrix is a matrix with all of its elements equal to zero except for the elements on
the diagonal, for example:

D =

(
D1 0
0 D2

)
. (3.142)

A matrix A is called diagonalizable if there exists an invertible matrix P such that the matrix
P−1 AP is diagonal. In quantum theory, we are mostly concerned with the case where P is also
a unitary matrix, such that P† AP is diagonal. It turns out that a matrix A is diagonalizable by
a unitary matrix P if and only if A is normal. This means, in particular, that both Hermitian
and unitary matrices are diagonalizable in such a way.

Let A be a normal matrix with an orthonormal eigenbasis |Bi⟩with corresponding eigenvalues
λi:

A |Bi⟩ = λi |Bi⟩ , ∀i. (3.143)

Now, consider the change-of-basis matrix (3.99), this time from the eigenbasis |Bi⟩, which is
orthonormal to the standard basis |1i⟩:

P1←B ≡

 ⟨11|B1⟩ · · · ⟨11|Bn⟩
...

. . .
...

⟨1n|B1⟩ · · · ⟨1n|Bn⟩

 . (3.144)
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Note that each eigenvector |Bi⟩ is represented in the standard basis |1i⟩ as follows:

|Bi⟩
∣∣∣∣∣
1

=

 ⟨11|Bi⟩
...

⟨1n|Bi⟩

 , ∀i. (3.145)

Hence, the columns of P1←B are in fact the eigenvectors |Bi⟩ themselves, as expressed in the
standard basis:

P1←B =

(
|B1⟩ · · · |Bn⟩

)
. (3.146)

Let us denote P ≡ P1←B for short. Then

AP = A
(
|B1⟩ · · · |Bn⟩

)
=

(
A |B1⟩ · · · A |Bn⟩

)
=

(
λ1 |B1⟩ · · · λn |Bn⟩

)
.

How did we get this? Remember that in Section 3.2.9 we said that the element of the matrix
AP at row i, column j is calculated by taking the inner product of row i of A with column j of
P. But column j of P is just

∣∣Bj
〉
. The product A |Bi⟩ is another ket, whose rows are obtained

by taking the inner product of each row of A with |Bi⟩ respectively. The last equality follows
from (3.143).

Next, we write the full matrix and decompose it into two matrices:

AP =

 λ1⟨11|B1⟩ · · · λn⟨11|Bn⟩
...

. . .
...

λ1⟨1n|B1⟩ · · · λn⟨1n|Bn⟩

 =

 ⟨11|B1⟩ · · · ⟨11|Bn⟩
...

. . .
...

⟨1n|B1⟩ · · · ⟨1n|Bn⟩


 λ1 0 0

0
. . . 0

0 0 λn

 .

(3.147)
You should calculate the product on the right-hand side (even just for n = 2 or n = 3) to
convince yourself that this decomposition is indeed correct. Now, if we define a new diagonal
matrix, with the eigenvalues on the diagonal:

D ≡

 λ1 0 0

0
. . . 0

0 0 λn

 , (3.148)

then we can write (3.147) as
AP = PD. (3.149)
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Finally, we multiply by P−1 from the left to get

P−1 AP = D. (3.150)

Exercise 3.53. Diagonalize the following matrix:

A =

(
1 3
3 1

)
. (3.151)

Problem 3.54. Prove that the change-of-basis matrix P ≡ P1←B as defined above, with |Bi⟩
an orthonormal eigenbasis, is unitary. This means that we can also write P† AP = D, since
P−1 = P† for unitary matrices.

Problem 3.55. Show that if A is a normal matrix then it has the outer product representation

A =
n

∑
i=1

λi |Bi⟩ ⟨Bi| , (3.152)

where |Bi⟩ is an orthonormal eigenbasis and λi are the eigenvalues of the eigenvectors |Bi⟩.

3.2.17 The Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality states that for any two vectors |Ψ⟩ and |Φ⟩, we have

|⟨Ψ|Φ⟩| ≤ ∥Ψ∥ ∥Φ∥ . (3.153)

To prove it, consider an orthonormal basis |Bi⟩ such that15

|B1⟩ ≡
|Φ⟩
∥Φ∥ . (3.154)

15Such a basis can always be generated using a method called the Gram-Schmidt process, which we will not
describe here.
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Then, using the completeness relation (3.81), we find:

∥Ψ∥2 ∥Φ∥2 = ⟨Ψ|Ψ⟩ ∥Φ∥2

= ⟨Ψ|
(

n

∑
i=1
|Bi⟩⟨Bi|

)
|Ψ⟩ ∥Φ∥2

= ⟨Ψ|
(
|B1⟩⟨B1|+

n

∑
i=2
|Bi⟩⟨Bi|

)
|Ψ⟩ ∥Φ∥2

= ⟨Ψ|
(

1

∥Φ∥2 |Φ⟩ ⟨Φ|+
n

∑
i=2
|Bi⟩⟨Bi|

)
|Ψ⟩ ∥Φ∥2

=

(
1

∥Φ∥2 ⟨Ψ|Φ⟩⟨Φ|Ψ⟩+
n

∑
i=2
⟨Ψ|Bi⟩⟨Bi|Ψ⟩

)
∥Φ∥2

=

(
1

∥Φ∥2 |⟨Ψ|Φ⟩|
2 +

n

∑
i=2
|⟨Ψ|Bi⟩|2

)
∥Φ∥2

= |⟨Ψ|Φ⟩|2 +
n

∑
i=2
|⟨Ψ|Bi⟩|2 ∥Φ∥2

≥ |⟨Ψ|Φ⟩|2 .

Taking the square root, we obtain (3.153).

Problem 3.56. Explain each step in the proof above.

Exercise 3.57. Check this inequality explicitly for three pairs of vectors of your choice.

Problem 3.58. Find a condition that is equivalent to an equality in the Cauchy-Schwarz
inequality. That is, find an “if and only if” statement for |⟨Ψ|Φ⟩| = ∥Ψ∥ ∥Φ∥ involving
properties of |Ψ⟩ and |Φ⟩. Prove the statement in both directions.

3.3 Probability Theory

3.3.1 Random Variables and Probability Distributions

A random variable X is a function which assigns a real value to each possible outcome of an
experiment or process. Sometimes these values will be the actual measured value in some
way: for example, the value of the random variable X for rolling a 6-sided die will simply be
the number on the die. Other times, the value of the random variable will be just a numerical
label assigned to each outcome: for example, for a coin toss we can assign 1 to heads and 0 to
tails (but we can also assign any other numbers, if we want).

These examples were of discrete random variables, but we can also have continuous random
variables, such as the position of a particle along a line, which in principle can take any real
value. For simplicity, we will focus on discrete random variables here.
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A (discrete) probability distribution assigns a probability to each value of a random variable.
We denote by P (X = x) the probability that the random variable X will have the value x. A
probability is a number between 0 and 1, which denotes how likely it is (in percentage) for the
value to occur, so 0 means this value never occurs and 1 (= 100%) means this value always
occurs.

The probabilities for all the possible values must sum to 1, because if for example they only
sum to 0.9, this means that in 10% of the cases the random variable has no value, which
doesn’t really make sense. Also, if P (X = x) = 0 then there must be at least one other possible
value that X can take, since it will never evaluate to x, and if P (X = x) = 1 then there cannot
be any other possible values that X can take, since it always evaluates to x.

For example, for the coin toss we have

P (X = 0) =
1
2

, P (X = 1) =
1
2

, (3.155)

and for the 6-sided die roll we have

P (X = 1) =
1
6

, P (X = 2) =
1
6

, P (X = 3) =
1
6

, (3.156)

P (X = 4) =
1
6

, P (X = 5) =
1
6

, P (X = 6) =
1
6

. (3.157)

Note how the probabilities sum to 1 in each case. Of course, we could also say that maybe the
coin toss results in heads only 49.9% of the time, and tails another 49.9% of the time, and the
remaining 0.2% is the probability for the coin to balance perfectly on its edge... But usually we
ignore subtleties like this and assume we have idealized coins. Similarly, we could also have
a loaded coin which lands on heads more or less frequently than it lands on tails, but usually
we assume that the coins are fair unless stated otherwise. The same discussion applies for
dies, with any number of sides: they are, by default, assumed to be idealized and fair.

These probability distributions are uniform, since they assign the same probability to each
value of X. However, probability distributions need not be uniform. A simple example is a
loaded coin, which perhaps has

P (X = 0) =
1
3

, P (X = 1) =
2
3

. (3.158)

As a more interesting example, if we toss two fair coins X1 and X2 and define a random
variable to be the sum of the results, X ≡ X1 + X2, then we can get any of the following 4
outcomes:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 2. (3.159)

The probability for each outcome is
1
2
· 1

2
=

1
4

, (3.160)
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but the outcome 1 appears twice; thus

P (X = 0) =
1
4

, P (X = 1) =
1
2

, P (X = 2) =
1
4

. (3.161)

Of course, the probabilities still sum to 1.

Exercise 3.59. Calculate the probability distribution for the sum of two rolls of a 6-sided die.
This is known to players of role-playing games (such as Dungeons & Dragons) as a “2d6”,
where we define ndN to be the sum of n rolls of an N-sided die.

3.3.2 Conditional Probability

Consider two random variables, X and Y. Let X have N possible values xi, i ∈ {1, . . . , N}
and let Y have M possible values yi, i ∈ {1, . . . , M}. Then the joint probability to get X = xi

and Y = yj at the same time, for some specific choice of i and j, is denoted

P
(
X = xi ∩Y = yj

)
, (3.162)

where ∩means16 “and”. Furthermore, we have

M

∑
j=1

P
(
X = xi ∩Y = yj

)
= P (X = xi) , (3.163)

because the total probability to get X = xi is the sum of all the different probabilities that
involve X = xi plus something else. To illustrate this, consider the following random
variables:

X = whether you pass or fail this course, (3.164)

Y = whether you did or did not do all the homework. (3.165)

There are in total 4 different combinations, and their probabilities must sum to 1. Maybe the
probabilities are as follows:

P (pass∩ did homework) = 40%, (3.166)

P (pass∩ didn’t do homework) = 20%, (3.167)

P (didn’t pass∩ did homework) = 10%, (3.168)

P (didn’t pass∩ didn’t do homework) = 30%. (3.169)

Then clearly the total probability that you pass (whether or not you did the homework) is
40% + 20% = 60%, and the total probability that you do not pass is 10% + 30% = 40%. This
is exactly what (3.163) means.

16More precisely, ∩means the intersection of two sets, where one is the set of events for which X = xi and the
other is the set of events for which Y = yj.
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However, what you really want to know is the probability that you pass given that you did
the homework vs. the probability that you pass given that you did not do the homework. This
is called conditional probability. The probability for outcome X given outcome Y is denoted
P (X|Y), where | is read as “given that”. It is related to P (X ∩Y) as follows:

P (X|Y) = P (X ∩Y)
P (Y)

. (3.170)

In other words, it is the probability that both X and Y happened, divided by the probability
for Y to happen. Let us calculate:

P (pass | did homework) =
40%

40% + 10%
= 80%, (3.171)

P (pass | didn’t do homework) =
20%

20% + 30%
= 40%. (3.172)

So you better do all the homework, because that doubles your chances of passing the course!

Exercise 3.60. There are six more conditional probabilities that we did not calculate here.
Calculate them. What do you learn from the results?

Exercise 3.61. A test for COVID-19 has17 a 1% chance of false positive, i.e. the result is
positive but the patient isn’t actually sick, and a 1% chance of false negative, i.e. the result is
negative but the patient is actually sick. Assume that 0.1% of the population is actually sick.

A. Fill in the blanks in the following table:

Sick Healthy Total
Actual status 99.9% 100%
Positive test 0.099% 1.098%

Negative test 0.001% 98.901%

(3.173)

B. Given that you tested positive, what is the conditional probability that you actually have
COVID-19?

C. Given that you tested negative, what is the conditional probability that you actually don’t
have COVID-19?

D. Which result should you trust, a positive one or a negative one?

3.3.3 Expected Values

The expected value (or expectation value or mean) ⟨X⟩ of a random variable X is the average over
all the possible values X can take, weighted by their assigned probabilities:

⟨X⟩ ≡
N

∑
i=1

P (X = xi) xi, (3.174)

17FYI: This exercise is not based on any real data!

48



where N is the total number of possible outcomes, xi is the value of outcome number i, and
P (X = xi) is the probability to get xi. In the example of the coin toss, we have:

⟨X⟩ = 1
2
· 0 + 1

2
· 1 =

1
2
= 0.5, (3.175)

and for the 6-sided die roll, we have:

⟨X⟩ = 1
6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6 =

7
2
= 3.5. (3.176)

Observe that the expected value in both cases is not an actual value the random variable can
take! This is often the case with discrete random variables.

We will now prove that the expected value is linear:

⟨αX + βY⟩ = α ⟨X⟩+ β ⟨Y⟩ , α, β ∈ R. (3.177)

This can be broken down into two rules:

⟨αX⟩ = α ⟨X⟩ , ⟨X + Y⟩ = ⟨X⟩+ ⟨Y⟩ . (3.178)

The first rule is easy to prove:

⟨αX⟩ =
N

∑
i=1

P (αX = αxi) (αxi)

= α
N

∑
i=1

P (X = xi) xi.

To prove the second part, let X have N possible values xi and let Y have M possible values yi,
as in the previous section. Then in calculating ⟨X + Y⟩ we need to sum over both N and M,
to ensure we take all possible combinations of X and Y into account. Using (3.163), we get:

⟨X + Y⟩ =
N

∑
i=1

M

∑
j=1

P
(
X = xi, Y = yj

) (
xi + yj

)
=

N

∑
i=1

(
M

∑
j=1

P
(
X = xi, Y = yj

))
xi +

M

∑
j=1

(
N

∑
i=1

P
(
X = xi, Y = yj

))
yj

=
N

∑
i=1

P (X = xi) xi +
M

∑
j=1

P
(
Y = yj

)
yj

= ⟨X⟩+ ⟨Y⟩ ,

as we wanted to prove.

Exercise 3.62. Calculate the expected value for the sum of two coin tosses and for a 2d6
roll (the sum of two 6-sided dies). First, do it by defining one random variable for the sum,
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calculating the probabilities, and then using the definition of the expected value. Then, do it
by considering just one coin or one 6-sided die respectively, and use (3.177). Compare your
results.

3.3.4 Standard Deviation

The standard deviation18 measures how far the outcomes are expected to be from the expected
value. To calculate the standard deviation, we take the expected value of (X− ⟨X⟩)2, that is,
the square of the difference between the actual value of X and its expected value ⟨X⟩. Then,
we take the square root of the result to obtain the standard deviation ∆X:

∆X ≡
√〈

(X− ⟨X⟩)2
〉

. (3.179)

To simplify this, first we note that

(X− ⟨X⟩)2 = X2 − 2X ⟨X⟩+ ⟨X⟩2 . (3.180)

In this formula, X2 is a random variable (whose values are the squares of the values of X), but
⟨X⟩ is just a number, not a random variable. Since it is a number, we can treat it as a random
variable that only returns one value with 100% probability, which means that

⟨⟨X⟩⟩ = ⟨X⟩ . (3.181)

So, by (3.177), we have: 〈
(X− ⟨X⟩)2

〉
=
〈

X2〉− 2 ⟨X⟩ ⟨X⟩+ ⟨X⟩2

=
〈

X2〉− ⟨X⟩2 .

Therefore, the standard deviation can be written as follows:

∆X =

√
⟨X2⟩ − ⟨X⟩2. (3.182)

This form is easier to do calculations with. For example, for the coin toss we have from before

⟨X⟩ = 1
2

, (3.183)

and we also calculate: 〈
X2〉 = 1

2
· 02 +

1
2
· 12 =

1
2

, (3.184)

18By the way, the square of the standard deviation is called the variance, but it will not interest us in this course.
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which gives us

∆X =

√
1
2
− 1

4
=

1
2

. (3.185)

This makes sense, as the two actual values of the outcomes, 0 and 1, lie exactly 1/2 away from
the expected value ⟨X⟩ = 1/2 in each direction. So they each “deviate” from it by 1/2.

For the die roll, we have from before

⟨X⟩ = 7
2

, (3.186)

and we also calculate: 〈
X2〉 = 1

6
(
12 + 22 + 32 + 42 + 52 + 62) = 91

6
, (3.187)

which gives us

∆X =

√
91
6
− 49

4
=

√
35
12
≈ 1.7. (3.188)

Exercise 3.63. Calculate the standard deviation for the sum of two coin tosses and for a 2d6
roll.

3.3.5 Normal (Gaussian) Distributions

The normal (or Gaussian) distribution is depicted in Figure 3.2. Unlike the distributions we
have considered so far, it is continuous; but we won’t worry about that right now. The shape
of the distributions is a “bell curve”, centered on some mean (or expected) value µ (equal to 0
in the plot) and with a standard deviation σ. The values of µ and σ can be any real numbers.

-3 σ -2 σ -σ σ 2 σ 3 σ

0.1

0.2

0.3

0.4

Figure 3.2: The normal (or Gaussian) distribution.

The “68-95-99.7 rule” tells us the fraction of outcomes which lie within 1, 2 and 3 standard
deviations of the mean:
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• Roughly 68% of the outcomes lie between −1σ and +1σ,

• Roughly 95% of outcomes lie between −2σ and +2σ,

• Roughly 99.7% of outcomes lie between −3σ and +3σ.

The normal distribution is the most common probability distribution you will encounter in
this course, and in physics and math in general. The reason for that is that there is a theorem,
the central limit theorem, which states that whenever we take the sum of independent random
variables, the probability distribution of the sum will gradually start to look like a normal
distribution. As we add more and more variables, the sum will get closer and closer to a
normal distribution.

This can already be seen in the case of the die rolls. For a 1d6 roll we have a uniform
distribution, as depicted in Figure 3.3. For a 2d6 roll, we get a triangular distribution centered
at the mean value of 7, as depicted in Figure 3.4. When solving Exercise 3.59, you found that
the probability for each possible combination of die rolls is 1

6 ·
1
6 = 1

36 , but as for the sum of the
rolls, the outcomes 2 and 12 appear only once (corresponding to 1+1 and 6+6 respectively),
while the outcome 7 appears six times (corresponding to 1+6, 2+5, 3+4, 4+3, 5+2, and 6+1)
and thus has a probability of 6/36 = 1/6, and so on.

For a 3d6 roll, the sum of three rolls of a 6-sided die, as depicted in Figure 3.5, we see that
the probability distribution is starting to obtain the signature “bell” shape of the normal
distribution. Its mean value is 10.5, as you can calculate (3× 3.5). We will get closer and closer
to a normal distribution as we increase the number of dice, that is, the n in nd6. In the limit
n → ∞, we will precisely obtain a normal distribution, but even for small values of n, the
approximation is already close enough for most practical purposes.

1 2 3 4 5 6

1/6

Figure 3.3: The distribution of results for one roll of a 6-sided die, also known as
1d6. It is a uniform distribution.
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2 3 4 5 6 7 8 9 10 11 12

1/36

2/36

3/36

4/36

5/36

6/36

Figure 3.4: The distribution of results for the sum of two rolls of a 6-sided die,
also known as 2d6. It is triangular.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1/216

3/216

6/216

10/216

15/216

21/216

25/216

27/216

Figure 3.5: The distribution of results for the sum of three rolls of a 6-sided die,
also known as 3d6. It is starting to obtain the “bell” shape of a normal distribution.

Exercise 3.64. Plot the probability distributions of the sum of n coin tosses, from n = 1 and
up to a value of n large enough for the distribution to start looking like a normal distribution.

Problem 3.65. Write a computer program (I recommend using either Mathematica or Python)
that will generate a plot of the probability distribution for an nds roll with an arbitrary number
of rolls n and an arbitrary number of sides s (where s = 2 corresponds to a coin). It should
also plot the continuous normal distribution (with the correct mean and standard deviation)
over the discrete distribution, to check how closely they match. Generate some plots using
your program, and use them to demonstrate the central limit theorem for different values of n
and s.

Problem 3.66. A wizard can cast one of two spells on a dragon.
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• For Psychic Ray, the dragon makes a saving throw: it rolls a d20, and if it gets 8 or
higher, it succeeds. If the saving throw fails, the spell does 10d8 points of psychic
damage. If the saving throw succeeds, the damage is reduced by 50%.

• For Fiery Missile, the wizard rolls a d20, and if the result is 9 or higher, the attack hits. If
the attack misses, no damage will be done. If the attack hits, the spell will do 6d6+8d10
points of fire damage. However, the wizard is not sure if the dragon is resistant to fire or
not; there is a probability of 30% that it is resistant, in which case the damage is reduced
by 50%.

Which spell will do more damage on average?

4 The Foundations of Quantum Theory

Now that we have obtained the required mathematical tools, we can finally present quantum
theory! This theory provides the correct fundamental framework for virtually all of known
physics. We will see that its fundamental ingredients are Hilbert spaces with states and
operators. These universal ingredients are then used to create particular models describing
specific physical systems.

In this chapter, we will work exclusively with discrete quantum systems, which are based
on finite-dimensional Hilbert spaces. These are much simpler than continuous quantum
systems, which are based on infinite-dimensional Hilbert spaces. In particular, the math is
much simpler – just linear algebra, without any calculus. However, it turns out that finite-
dimensional Hilbert spaces are sufficient to define all of the fundamental concepts in quantum
theory, and derive almost all of the most important results.

4.1 Axiomatic Definition

4.1.1 Dimensionless and Dimensionful Constants

Consider the fine-structure constant, which represents the strength of the electromagnetic
interaction:

α ≈ 0.0073. (4.1)

This constant is not specified in any particular units, such as meters or second; it is a pure
number. We call such a constant dimensionless.

In contrast, some constants in physics are dimensionful. This means that their numerical value
depends on the system of units we use. For example, the speed of light c has the following
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values in different systems of units:

c ≈ 3.0× 108 meters/second

≈ 1.1× 107 miles/minute

≈ 170 astronomical units/day

≈ 3.5× 10−5 parsecs / hour

≈ 1 light year / year.

What this means is that the numerical value of the speed of light does not have any physical
meaning whatsoever19! It is merely a consequence of choosing to work with one system of
units and not the other. But units are human constructs; the universe could not care less what
units humans choose to measure things with. Therefore, none of the numbers written above
have any actual meaning.

The numerical values of dimensionless constants are the only numbers that have a physical
meaning, as they do not depend on the system of units. However, keep in mind that they
are still, unavoidably, just parameters that are defined by humans in a certain way. There’s
nothing special about the number α ≈ 0.0073 itself; we could also define another parameter
β ≡ 2α and use that in our equations instead. So don’t try to do numerology20 with the
specific value of α! What is important here is not the numerical value itself, but the fact that it
is independent of the choice of units.

For this reason, it is most natural to work in Planck units, where:

c = G = h̄ =
1

4πε0
= kB = 1. (4.2)

Here c is the speed of light, G is the gravitational constant used in Newtonian gravity, h̄ is the
(reduced) Planck constant used in quantum mechanics, 1/4πε0 is the Coulomb constant used in
electromagnetism, and kB is the Boltzmann constant used in statistical mechanics.

All of these are dimensionful constants, which means we don’t really care about their
numerical values – so we might as well just set them to 1. This allows us to simply remove
them from our equations. For example, instead of writing

√
h̄G/c3 – also known as the Planck

length – we just write 1, and this allows us to write the equation A = h̄Gγ
√

j (j + 1)/c3 as
A = γ

√
j (j + 1). Much simpler, right21?

Planck units are commonly used when doing research in theoretical physics, because they
make equations simpler, more elegant, and less cluttered. However, sometimes we get
numerical results that we wish to convert to real-world units such as kilograms and meters.

19Indeed, in modern SI units the speed of light is defined to be 299,792,458 meters per second, and this definition
is used to measure the length of a meter – not the other way around.

20Interestingly, in the past some physicists tried to claim that α equals exactly 1/137, but more precise mea-
surements revealed that this is not actually the case. Still, you will often see it written as 1/137 for that historical
reason.

21This is the equation for the eigenvalues of the area operator in loop quantum gravity. We will learn about
operators in the next section.
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To do this, all we need to do is to find the combination of the constants in (4.2) that has the
desired units. For example, if we know that our pure number represents length, then we can
multiply it by the Planck length

√
h̄G/c3 ≈ 1.6× 10−35 meters to find its value in meters.

Since this course is taught by a theorist, we will use Planck units exclusively. This means that
unlike in a traditional quantum mechanics course, h̄ will not appear in any of our equations!

Exercise 4.1. Calculate your age, height, mass, and body temperature in Planck units. For
this, you will have to find combinations of the dimensionful constants we set to 1 in (4.2) that
give you the desired units, as we did for the Planck length.

4.1.2 Hilbert Spaces, States, and Operators

Recall that in Section 3.2.2 we defined a Hilbert space as a vector space with an inner product
that is also a complete metric space with respect to that inner product. Quantum theory can
be defined axiomatically using the theory of Hilbert spaces. In this chapter we will list a total
of seven fundamental axioms, plus an eighth axiom that may or may not be fundamental.

The System Axiom: A system in quantum theory is the mathematical representation of a
physical system (such as a particle) as a Hilbert space. The type and dimension of the Hilbert
space will depend on the particular system. Note that the dimension of the Hilbert space is
unrelated to the dimension of spacetime.

In the finite-dimensional case, for example when the system involves spin, the Hilbert space
will usually be Cn for some n, such as C2, which was used in most of the examples above and
will continue to be used below. In the infinite-dimensional case, for example when the system
involves position and momentum (which are, in general, continuous and not discrete) the
Hilbert space it will usually be a space of functions, which is much more complicated.

The State Axiom: A state of a quantum system is a vector with unit norm in the system’s
Hilbert space, that is, a vector |Ψ⟩ which satisfies

∥Ψ∥ =
√
⟨Ψ|Ψ⟩ = 1. (4.3)

States represent the different configurations the system can have. It is important to stress that
only unit vectors can represent states. If for some reason we have a vector with non-unit
norm, we must normalize it (divide it by its norm) to obtain a unit vector, which can then
represent a state.

Another important aspect of states is that they are only defined up to a complex phase. This
means that, if the vector |Ψ⟩ represents a state, then all vectors of the form ei ϕ |Ψ⟩ for ϕ ∈ R

represent the same22 state as |Ψ⟩. Note that adding a phase to a vector does not change the

22Actually, the more precise definition is that a state is a ray in a Hilbert space. Rays are defined as equivalence
classes of vectors such that a vector |Ψ⟩ is equivalent to λ |Ψ⟩ for any scalar λ ∈ C. The scalar can be separated into
a polar representation, λ = r ei ϕ, as we discussed in Section 3.1.4. The r part stretches the magnitude of the vector
by a factor of r, and the ei ϕ part (the phase) rotates it by ϕ radians. Any vector in the same equivalence class
represents the same state, so multiplying the vector by a scalar will not change the state it represents, whatever
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norm, since

∥∥ei ϕ Ψ
∥∥ =

√
(ei ϕ |Ψ⟩)† ei ϕ |Ψ⟩ =

√
⟨Ψ| e− i ϕ ei ϕ |Ψ⟩ =

√
⟨Ψ|Ψ⟩ = ∥Ψ∥ . (4.4)

The Operator Axiom: An operator on a Hilbert space is a linear transformation which takes a
vector and outputs another vector. By “linear” we mean that the operator A satisfies

A (|Ψ⟩+ |Φ⟩) = A |Ψ⟩+ A |Φ⟩ , A (λ |Ψ⟩) = λA |Ψ⟩ , (4.5)

where |Ψ⟩ and |Φ⟩ are vectors and λ is a scalar. In the discrete case, operators are just matrices
on Cn. In the continuous case, where the vectors are actually functions, the operators will
be derivatives acting on the functions23. In quantum theory, operators transform states into
other states, and they represent an action performed on the system, such as a measurement, a
transformation, or an evolution in time.

4.1.3 Hermitian Operators and Observables

An operator corresponding to a Hermitian matrix24 is a Hermitian operator. Above you have
proved some interesting properties of these operators. In particular, their eigenvalues are real,
and there is an orthonormal basis consisting of their eigenvectors (a.k.a. an eigenbasis).

The Observable Axiom: In quantum theory, Hermitian operators correspond to observables,
that is, properties of the system that can be measured. The eigenvalues of these operators,
which are real as for all Hermitian operators, exactly correspond to all the different possible
outcomes of the measurement. The mapping is one-to-one and onto (a.k.a. a bijection),
meaning that each eigenvalue corresponds to exactly one measurement outcome and vice
versa. This makes sense because we always measure real numbers; there are no measurement
devices that measure complex numbers!

Examples of observables are position, momentum, angular momentum, energy, and spin
(which is intrinsic angular momentum, as we learned in Section 2.1.4). All of these may be
represented as Hermitian operators on an appropriate Hilbert space.

4.1.4 Probability Amplitudes

Let the state of a quantum system be |Ψ⟩. Once we have chosen a Hermitian operator to
represent our observable, we may obtain an orthonormal basis of states |Bi⟩ corresponding

the magnitude and phase are. However, it is conventional to choose states to be represented specifically by a unit
vector from the equivalence class, since otherwise we would have to normalize vectors to 1 all the time. This is
also the reason we only use orthonormal bases in quantum theory.

23In it interesting to note that there is often still a sense in which operators and states in a continuous Hilbert
space have the equivalent of indices and elements. You will learn about this in more advanced courses on quantum
mechanics, especially quantum field theory.

24In an infinite-dimensional Hilbert space, where we don’t necessarily have a matrix representation, a Hermitian
operator is defined using the property that it is self-adjoint.
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to the eigenvectors of that operator. In quantum mechanics, these eigenvectors are called
eigenstates.

The Probability Axiom: The inner product ⟨Bi|Ψ⟩ is called the probability amplitude to measure
the eigenvalue λi corresponding to the eigenstate |Bi⟩, given the state |Ψ⟩. When we take the
magnitude-squared of a probability amplitude, we get the corresponding probability. Thus

|⟨Bi|Ψ⟩|2 (4.6)

is the probability to measure the eigenvalue λi corresponding to the eigenstate |Bi⟩, given the
state |Ψ⟩. This is also known as the Born rule.

The first four axioms that we presented here simply defined the meaning of systems, states,
operators, and observables in mathematical terms. The Probability Axiom, on the other hand,
has to do with the relations between these mathematical structures. One can thus justifiably
ask: why would this be a probability in the first place?

Unfortunately, since this is an axiom, it cannot be derived from anything more fundamental,
such as other axioms. However, at the very least, we can verify that it indeed behaves exactly
like a probability is expected to. This follows from the fact that

n

∑
i=1
|⟨Bi|Ψ⟩|2 =

n

∑
i=1
⟨Bi|Ψ⟩∗⟨Bi|Ψ⟩

=
n

∑
i=1
⟨Ψ|Bi⟩⟨Bi|Ψ⟩

= ⟨Ψ|
(

n

∑
i=1
|Bi⟩⟨Bi|

)
|Ψ⟩

= ⟨Ψ|Ψ⟩
= 1,

where we used the following:

• Taking the complex conjugate of an inner product switches the order of the vectors,

• The completeness relation (3.81),

• All quantum states have a norm (and thus also norm-squared) of 1.

What does this mean? The number |⟨Bi|Ψ⟩|2 for each value of i from 1 to n corresponds to each
of the n possible outcomes of a measurement. We know that it must be non-negative, because
it is a magnitude of a complex number. Also, when taking the sum of all such numbers, we
get 1. In other words, the numbers |⟨Bi|Ψ⟩|2 behave like probabilities: they are real numbers
between 0 and 1, which always sum to 1. Why they actually represent probabilities is a
question that has no good answer except that this is just how quantum theory works, and it
can be verified experimentally.
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One might wonder why we bothered mentioning the probability amplitudes ⟨Bi|Ψ⟩, which
are complex numbers, instead of just directly calculating the probabilities |⟨Bi|Ψ⟩|2. It turns
out that the fact that probability amplitudes are complex numbers is an essential part of what
makes quantum mechanics different from classical mechanics. In fact, you can even think of
quantum mechanics as a generalization of classical probability theory where probabilities are
allowed to be complex numbers.

We could write down a classical theory which assigns probabilities to each measurement
outcome; but since probabilities must be real non-negative numbers, when they are added the
result is always a higher probability. Therefore, classical probabilities interfere only construc-
tively. In quantum theory, on the other hand, one does not add probabilities, but probability
amplitudes; and as we will see, they can interfere with one another both constructively and
destructively, just as we discussed in Section 2.1.3.

If the probability amplitudes for two events have opposite complex phases (for example,
one is positive and one is negative) they can even cancel each other out completely – so that
neither event happens, since their total probability amplitude (and thus also probability) is
zero! This, of course, can never happen with classical probability.

Exercise 4.2. In the Hilbert space C2, consider the Hermitian operator

σx ≡
(

0 1
1 0

)
. (4.7)

Find its eigenstates (make sure they are normalized to 1!) and eigenvalues. Then, calculate
the probability to measure each of the eigenvalues given that the system is in the state

|Ψ⟩ ≡ 1√
10

(
1
3

)
. (4.8)

Verify that the probabilities sum to 1.

4.1.5 Superposition

Consider an observable represented by a Hermitian operator with an orthonormal basis of
eigenstates |Bi⟩. As with any basis, we may write the state vector |Ψ⟩ as a linear combination
of the basis eigenstates |Bi⟩:

|Ψ⟩ =
n

∑
i=1
|Bi⟩⟨Bi|Ψ⟩. (4.9)

Remember that each coefficient ⟨Bi|Ψ⟩ is the probability amplitude to measure the eigenvalue
corresponding to the eigenstate |Bi⟩ given that the system is in the state |Ψ⟩. So this is a
sum over the basis states |Bi⟩, corresponding to the possible measurement outcomes, with a
probability amplitude attached to each of these outcomes, which depends on the state |Ψ⟩.

59



Such a linear combination of states25 is called a superposition.

The concept of superposition is responsible for many of the weird properties of quantum
mechanics, as we will soon see. Importantly, superposition is not an axiom, but simply
an (almost trivial) mathematical property of vectors in Hilbert spaces. This means that
superposition follows automatically from the previous axioms; it is not something that needs
to be introduced separately.

You will often hear people (including physicists, if they are being sloppy) say that super-
position means that “the system is in multiple states at the same time”. For example, it is
frequently said about particles – which can be in a superposition of eigenstates corresponding
to different outcomes for the measurement of their position – that “the particle is in multiple
places at the same time”. However, this is a common misconception – or at the very least, an
overly literal interpretation of the math.

The fact that a state |Ψ⟩ can be written in a superposition of eigenstates |Bi⟩ doesn’t mean
that the system is actually “in” all of these different states at once. The system is, in fact, in
only one state: the state |Ψ⟩. This state can be represented in the eigenbasis |Bi⟩, and doing
this reveals the probability to measure each of the eigenvalues. However, one can always
find26 an orthonormal basis where |Ψ⟩ itself is one of the basis states – and often, this can be
an eigenbasis corresponding to another observable of the system. In that basis, the system
will not be in a superposition – it will just be in the state |Ψ⟩, with a probability amplitude of
⟨Ψ|Ψ⟩ = 1!

So instead of saying that “the system is in all of the states |B1⟩ , . . . , |Bn⟩ at once”, it is more
precise to say that the system is currently in the state |Ψ⟩, and a measurement of the observable
with the eigenbasis |Bi⟩ could yield different outcomes, with the probability amplitude for
outcome number i given by the projection27 of |Ψ⟩ on |Bi⟩, calculated by taking the inner
product ⟨Bi|Ψ⟩. It sounds less cool and mysterious, but it is more accurate and less prone to
confusion and misinterpretation.

Of course, this description is too technical for the average person, which is why physicists
usually choose to just say, incorrectly, that “the system is in multiple states at the same
time”. But now that you actually know the math of quantum theory, you should be able to
understand the correct definition of superposition! I will let you digest all of this for now, and
in Section 4.2.4 we will discuss an analogy, using a concrete quantum system, that should
help you understand this better.

Exercise 4.3. Consider again the Hermitian operator from Exercise 4.2,

σx ≡
(

0 1
1 0

)
. (4.10)

25More generally, a superposition is any linear combination of states. The states don’t have to be basis eigenstates
and the coefficients don’t have to be probability amplitudes – but they usually are.

26Using the Gram-Schmidt process mentioned in Footnote 15.
27In Rn, the projection of v on w (or w on v) is given by the dot product v ·w. Projections in Cn generalize this

concept, with the inner product replacing the dot product.
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Write down an example of a state |Ψ⟩ which corresponds to a probability of 1/3 to measure
the eigenvalue +1 and a probability of 2/3 to measure the eigenvalue −1.

Exercise 4.4. A quantum system described by the Hilbert space C3 has an observable corre-
sponding to a Hermitian operator A with the matrix representation

A ≡

 0 1 0
1 0 0
0 0 2

 . (4.11)

A. Find its eigenvalues and their corresponding eigenstates. Make sure the states are normal-
ized to 1.

B. Find three different states such that a measurement of the observable A will produce the
lowest eigenvalue with probability 1/7, the highest eigenvalue with probability 2/7, and
the middle eigenvalue with probability 4/7. When we say different states, we mean that the
vectors that represent them cannot be scalar multiples of each other; recall from Footnote 22
that such vectors are in the same equivalence class, and thus represent the same state. Make
sure the states are normalized to 1.

C. Write the state

|Ψ⟩ ≡ 1√
15

 1
−2

3− i

 (4.12)

as a superposition of eigenstates of A, and calculate the probabilities to measure each eigen-
value of A given that the system is in the state |Ψ⟩. Verify that the probabilities sum to
1.

4.1.6 Inner Products with Matrices, and the Expectation Value

Consider a Hermitian operator A with an orthonormal basis of n eigenstates |Bi⟩ and n
eigenvalues λi. To remind you, this means that

A |Bi⟩ = λi |Bi⟩ , ⟨Bi|Bj⟩ = δij, (4.13)

where δij is the Kronecker delta, which we defined in (3.53):

δij =

{
0 if i ̸= j,

1 if i = j.
(4.14)
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Then we have, for any i, j ∈ {1, . . . , n}:

⟨Bi|A|Bj⟩ = ⟨Bi|
(

A|Bj⟩
)

= ⟨Bi|λj|Bj⟩
= λj⟨Bi|Bj⟩
= λjδij.

Let us also recall the completeness relation (3.81):

n

∑
i=1
|Bi⟩⟨Bi| = 1. (4.15)

Now, let |Ψ⟩ be the state of the system. Then:

⟨Ψ|A|Ψ⟩ = ⟨Ψ|
(

n

∑
i=1
|Bi⟩⟨Bi|

)
A

(
n

∑
j=1
|Bj⟩⟨Bj|

)
|Ψ⟩

=
n

∑
i=1

n

∑
j=1
⟨Ψ|Bi⟩⟨Bi|A|Bj⟩⟨Bj|Ψ⟩

=
n

∑
i=1

n

∑
j=1

λjδij⟨Ψ|Bi⟩⟨Bj|Ψ⟩.

When taking the sum over j, the Kronecker delta δij is always 0 except when j = i. Therefore
the sum over j always reduces to just one element, the one where j = i. We get:

⟨Ψ|A|Ψ⟩ =
n

∑
i=1

λi⟨Ψ|Bi⟩⟨Bi|Ψ⟩

=
n

∑
i=1

λi⟨Ψ|Bi⟩⟨Ψ|Bi⟩∗

=
n

∑
i=1

λi |⟨Ψ|Bi⟩|2 ,

where in the second line we used the fact that switching the order of the vectors in the inner
product is equivalent to taking the complex conjugate.

Recall that |⟨Ψ|Bi⟩|2 is the probability to measure the eigenvalue λi associated with the
eigenstate |Bi⟩ given the state |Ψ⟩. Therefore, this is a sum of the possible values of the
measurement of A, weighted by their probabilities. But this exactly the expected value for the
measurement of A, as we defined in (3.174). For this reason, we sometimes simply write ⟨A⟩
(the usual notation for the expected value) instead of ⟨Ψ|A|Ψ⟩, as long as it is clear that the
expected value is taken with respect to the state |Ψ⟩. If we want to specify the state explicitly,
we can also use the notation

⟨A⟩Ψ ≡ ⟨Ψ|A|Ψ⟩. (4.16)
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Note that the terms “expected value” and “expectation value” are often used interchangeably,
but the former seems to be more popular in classical probability theory while the latter is
more popular in quantum theory.

Exercise 4.5. Calculate ⟨A⟩Ψ where

A ≡
(

1 0
0 −1

)
, (4.17)

for the following three states:

|Ψ1⟩ =
1√
2

(
1
1

)
, (4.18)

|Ψ2⟩ =
1√
5

(
1
2

)
, (4.19)

|Ψ3⟩ =
1√
13

(
3
2

)
. (4.20)

Exercise 4.6. Calculate ⟨A⟩Ψ for A and |Ψ⟩ as defined in Exercise 4.4:

A ≡

 0 1 0
1 0 0
0 0 2

 , |Ψ⟩ ≡ 1√
15

 1
−2

3− i

 . (4.21)

Then, calculate the expected value explicitly as defined in (3.174), using the probabilities you
calculated in part (C) of Exercise 4.4, and verify that you get the same result.

4.1.7 Summary For Discrete Systems

To summarize, here are the axioms of quantum theory we formulated so far. Here we
formulate them specifically for discrete systems with finite-dimensional Hilbert spaces:

1. The System Axiom: Discrete physical systems are represented by complex n-dimensional
Hilbert spaces Cn, where n depends on the specific system.

2. The State Axiom: The states of the system are represented by unit n-vectors in the
system’s Hilbert space, up to a complex phase.

3. The Operator Axiom: The operators on the system, which act on states to produce other
states, are represented by n× n matrices in the system’s Hilbert space.

4. The Observable Axiom: Physical observables in the system are represented by Her-
mitian operators on the system’s Hilbert space. The eigenvalues of the observable
(which are always real, since it’s Hermitian) represent its possible measured values.
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The eigenstates of the observable can be used to form an orthonormal eigenbasis of the
Hilbert space.

5. The Probability Axiom: For any observable, the probability amplitude to measure the
eigenvalue corresponding to the eigenstate |Bi⟩, given that the system is in the state |Ψ⟩,
is the inner product ⟨Bi|Ψ⟩. The probability is given by the magnitude squared of the
amplitude, |⟨Bi|Ψ⟩|2.

We also discussed two important consequences of these axioms:

• Superposition: Any state |Ψ⟩ can be written as a linear combination of the eigenstates
|Bi⟩ of an observable, with the probability amplitudes ⟨Bi|Ψ⟩ as coefficients:

|Ψ⟩ =
n

∑
i=1
|Bi⟩⟨Bi|Ψ⟩. (4.22)

• Expectation Value: If the system is in the state |Ψ⟩, the expectation value for the
measurement of the observable A is given by ⟨Ψ|A|Ψ⟩.

There are some more axioms that we will add later, but first let us discuss a concrete example
of a physical quantum systems and see these axioms in action.

Problem 4.7. Are these axioms enough to actually do physics? If not, what do you think is
missing and why?

4.2 Two-State Systems, Spin 1/2, and Qubits

So far in this chapter, we discussed quantum theory in an abstract way. However, a theory of
physics is useless without a concrete mapping between the theory and reality. The simplest
non-trivial28 quantum system is described by a 2-dimensional Hilbert space, and is thus called
a two-state system. All such system can also be used as qubits, or quantum bits – where one
state (doesn’t matter which one) corresponds to 0 and the other state corresponds to 1. Let us
now describe such systems in detail.

4.2.1 The Pauli Matrices

Let us introduce the Pauli matrices:

σx ≡
(

0 1
1 0

)
, σy ≡

(
0 − i
i 0

)
, σz ≡

(
1 0
0 −1

)
. (4.23)

As the notation suggests, each matrix is associated with a spatial axis: x, y, and z. These three
matrices have the following properties (here i stands for x, y, or z):

281-dimensional Hilbert spaces are of course simpler, but they are trivial, since there is only one state the system
can be in, with probability 1.
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• They are Hermitian: σ†
i = σi. This means they can represent observables.

• They are unitary: σ†
i = σ−1

i . This means they can represent transformations.

– Since they are both Hermitian and unitary, they are their own inverse: σi = σ†
i =

σ−1
i . This means that σ2

i = 1. A matrix which is its own inverse is called involutory.

• They have two eigenvalues: +1 and −1.

– The eigenstates of σx are:

|+x⟩ ≡ |+⟩ ≡ 1√
2

(
1
1

)
, |−x⟩ ≡ |−⟩ ≡ 1√

2

(
1
−1

)
. (4.24)

– The eigenstates of σy are:

|+y⟩ ≡ |+ i⟩ ≡ 1√
2

(
1
i

)
, |−y⟩ ≡ |− i⟩ ≡ 1√

2

(
1
− i

)
. (4.25)

– The eigenstates of σz are:

|+z⟩ ≡ |0⟩ ≡
(

1
0

)
, |−z⟩ ≡ |1⟩ ≡

(
0
1

)
, (4.26)

where, confusingly, |0⟩ corresponds to the eigenvalue +1 and |1⟩ corresponds to
the eigenvalue −1 (but that is the standard convention).

• Since the Pauli matrices are normal, the eigenstates of each matrix form an orthonormal
eigenbasis of C2. As you can see, the eigenstates of σz are just the standard basis.

• The eigenstates of σx and σz are related to each other as follows:

|+⟩ = 1√
2
(|0⟩+ |1⟩) , |−⟩ = 1√

2
(|0⟩ − |1⟩) , (4.27)

|0⟩ = 1√
2
(|+⟩+ |−⟩) , |1⟩ = 1√

2
(|+⟩ − |−⟩) . (4.28)

• A useful mnemonic is as follows: for each n, the state |n⟩ has the number n in the bottom
component (excluding the factor of 1/

√
2 if it exists). So the states |±⟩ have ±1 in the

bottom component, the states |± i⟩ have ± i in the bottom component, and the states |0⟩
and |1⟩ have 0 and 1 in the bottom component respectively.

Problem 4.8. Prove that σx, σy and σz are Hermitian.

Problem 4.9. Prove that σx, σy and σz are unitary.
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Problem 4.10. Consider the real vector space of 2× 2 Hermitian matrices. This is a vector
space where the vectors are Hermitian matrices and the scalars are real numbers. Don’t
get confused: in an abstract vector space, anything can be a “vector” – including numbers,
matrices, tensors of higher rank, functions, and even weirder stuff.

A. Show that the real vector space of 2× 2 Hermitian matrices satisfies all of the conditions in
our definition of a vector space in Section 3.2.1.

B. Show that the set
{

1, σx, σy, σz
}

, composed of the identity matrix 1 and the three Pauli
matrices, is a basis of the real vector space of 2× 2 Hermitian matrices. (Since we haven’t
defined an inner product on this space, you don’t need to show that the basis is orthonormal.)

4.2.2 Spin 1/2

Recall that in Section 2.1.4 we saw that, in the Stern-Gerlach experiment, the measurement
of angular momentum of a particle had only one of two discrete results: “spin up” (if the
particle is deflected up) or “spin down” (if the particle is deflected down).

More generally, in quantum theory, every particle has a property called spin, which is a
half-integer s:

s ∈
{

0,
1
2

, 1,
3
2

, 2, . . .
}

. (4.29)

The measurement of intrinsic angular momentum of a particle of spin s, in any direction,
always returns one of the results in the set

{−s,−s + 1, . . . , s− 1, s} . (4.30)

Note that this set always contains 2s + 1 values. Thus:

• A particle of spin 0 always has intrinsic angular momentum 0;

• A particle of spin 1/2 has intrinsic angular momentum −1/2 or +1/2;

• A particle of spin 1 has intrinsic angular momentum −1, 0, or +1;

• A particle of spin 3/2 has intrinsic angular momentum −3/2, −1/2, +1/2, or +3/2;

• and so on.

The particles in the Stern-Gerlach experiment have spin 1/2, where “spin up” corresponds
to intrinsic angular momentum +1/2 and “spin down” corresponds to −1/2. Since these
particles have exactly two possible states, spin up and down, they can be represented as a
two-state quantum system.

The Pauli matrix σi is a Hermitian operator, and thus it should correspond to an observable.
That observable is twice the spin in the i direction, since the Pauli matrices have eigenvalues

66



±1, but the spin should be ±1/2. It is thus customary to define

Sx ≡
1
2

σx, Sy ≡
1
2

σy, Sz ≡
1
2

σz, (4.31)

such that Si is a Hermitian operator corresponding to spin±1/2 along the i direction. You can
check that Si have the same eigenstates as σi, but they correspond to the eigenvalues ±1/2
instead of ±1.

In Problem 4.10 you proved that the set
{

1, σx, σy, σz
}

forms a basis for the real vector space
of 2× 2 Hermitian matrices. This means that any Hermitian operator on the Hilbert space
C2 can be written as a linear combination of these 4 matrices. Since Hermitian operators
correspond to observables, this means that every possible observable in C2 can be written in
terms of the Pauli matrices and the identity matrix.

In particular, given a unit vector v∈R3 pointing in an arbitrary direction in space (the real
space, not the Hilbert space!)

v ≡ (x, y, z) ,
√

x2 + y2 + z2 = 1, (4.32)

we can represent the measurement of intrinsic angular momentum along that direction as the
Hermitian operator (on the Hilbert space, C2)

Sv ≡ xSx + ySy + zSz =
1
2

(
z x− i y

x + i y −z

)
, (4.33)

which has the spin up and spin down eigenstates

|↑⟩ ≡ 1√
2 (1 + z)

(
1 + z

x + i y

)
, |↓⟩ ≡ 1√

2 (1− z)

(
1− z
−x− i y

)
. (4.34)

So we learn that, for a spin 1/2 particle, the measurement of intrinsic angular momentum
along any direction in space always yields one of exactly two possible results – spin up,
+1/2, or spin down, −1/2 – with the probability amplitudes calculated using the Hermitian
operator Sv.

Exercise 4.11. Show that the eigenstates |↑⟩ and |↓⟩ indeed correspond to the eigenstates of
Sx, Sy, and Sz – except the state |1⟩ (the −1/2 eigenstate of Sz), which results in a division by
zero in the bottom component.

Exercise 4.12. A spin-1/2 particle is in the state

|Ψ⟩ ≡ 1√
10

(
1
3

)
. (4.35)

A. What are the probabilities to measure spin up or down in the x direction?

B. What are the probabilities to measure spin up or down in the y direction?
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C. What are the probabilities to measure spin up or down in the z direction?

D. What are the probabilities to measure spin up or down in the direction of the unit vector( 1
3 , 2

3 , 2
3

)
?

E. What are the expectation values for a measurement of spin in each of the directions specified
in (A)–(D)? (Make sure you are using Si and not σi for this calculation!)

Problem 4.13.

A. Let us define the matrix commutator (or operator commutator):

[A, B] ≡ AB− BA. (4.36)

Show that the spin-1/2 operators Si have the commutation relations:[
Sx, Sy

]
= i Sz,

[
Sy, Sz

]
= i Sx, [Sz, Sx] = i Sy. (4.37)

B. Show that the commutation relations (4.37) can be written compactly as

[
Si, Sj

]
= i

3

∑
k=1

ϵij
kSk, (4.38)

where the indices i, j, k take the values {1, 2, 3} corresponding to {x, y, z}, and ϵij
k is the

Levi-Civita symbol, defined as

ϵij
k ≡


+1 if (i, j, k) is an even permutation of (1, 2, 3) ,

−1 if (i, j, k) is an odd permutation of (1, 2, 3) ,

0 otherwise.

(4.39)

By even permutation or odd permutation we mean that the permutation involves exchanging
elements an even or odd number of times. For example, (1, 3, 2) is an odd permutation,
because we exchanged elements once: 2 ↔ 3. However, (3, 1, 2) is an even permutation,
because we exchanged elements twice: 2↔ 3 and then 1↔ 3.

C. The matrix anti-commutator (or operator anti-commutator) is defined as follows:

{A, B} ≡ AB + BA. (4.40)

Show that the spin-1/2 operators Si have the anti-commutation relation

{
Si, Sj

}
=

1
2

δij, (4.41)

where δij is the Kronecker delta (times the identity matrix 1).
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4.2.3 Qubits

A classical bit can be in one of two states: 0 or 1. A quantum bit, or qubit for short, is instead in
a superposition of two states, denoted |0⟩ and |1⟩:

|Ψ⟩ = a |0⟩+ b |1⟩ , |a|2 + |b|2 = 1, (4.42)

where a, b ∈ C are the probability amplitudes:

a ≡ ⟨0|Ψ⟩, b ≡ ⟨1|Ψ⟩. (4.43)

Since the system has two states, it can be represented by the Hilbert space C2, and it is
conventional to choose |0⟩ and |1⟩ to be the vectors in the standard basis, which in this case is
called the computational basis:

|0⟩ ≡
(

1
0

)
, |1⟩ ≡

(
0
1

)
. (4.44)

Any two-state quantum system can serve as a qubit. In fact, even systems with more than
two states can be used, as long as two of these states can be decoupled (separated) from the
rest. Some examples include:

• Any spin 1/2 particle, such as an electron, where |0⟩ and |1⟩ are the eigenstates of
the spin operator along the z direction, Sz, so they represent spin up and spin down,
respectively, along that direction.

• The number of particles (doesn’t matter what kind of particles) in a system, where |0⟩
corresponds to a state with no particles (a vacuum) and |1⟩ corresponds to a state with
exactly one particle.

• The polarization of a photon, where |0⟩ is horizontal and |1⟩ is vertical polarization. (In
classical electromagnetism, an electromagnetic wave is composed of oscillating electric
and magnetic fields, and the polarization is the direction of the electric field.)

Qubits are used in quantum computers as the basic units of computations, just like bits in
classical computers. Since so many different systems can be represented mathematically in
the same way, we can build quantum computers in many different ways. We will discuss
quantum computers (from the theoretical point of view) in more details later.

4.2.4 The Meaning of Superposition

In Section 4.1.5 we discussed the concept of superposition, and we emphasized that it is
inaccurate to describe a system in a superposition of two states as being “in both states at
once”. Similarly, it is a common misconception that quantum computers are powerful because
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qubits, which are in a superposition of |0⟩ and |1⟩, and in some way “both 0 and 1 at the same
time” and this allows the quantum computer to “calculate all the possibilities at once”. That
would have been awesome, but unfortunately that is not how quantum computers work! We
will see how they really work later in this course.

|+〉=
1

2
(1,1)

|-〉=
1

2
(1,-1)

〈+|+〉 = 1

〈-|+〉 = 0

〈0|±〉= 1

2
|0〉=(1,0)

〈1|-〉=- 1

2

〈1|+〉= 1

2

|1〉=(0,1)

Figure 4.1: The eigenbasis {|0⟩ , |1⟩}, in red, and the eigenbasis {|+⟩ , |1⟩}, in blue.
A qubit in the state |+⟩ is in a superposition of |0⟩ and |1⟩, but this does not mean
it is in the states |0⟩ and |1⟩ “at the same time” – it is only in one state, |1⟩.

Now that we are familiar with a concrete quantum system, we can use it to illustrate further
the meaning of superposition. Let us consider, as a simple example, a qubit in the state |+⟩
(the eigenstate of spin +1/2 in the x direction):

|+⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

((
1
0

)
+

(
0
1

))
=

1√
2

(
1
1

)
. (4.45)
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For simplicity, let us forget for a second that we are dealing with complex vectors, and imagine
that they are vectors in R2, since that is much easier to visualize; see Figure 4.1. As vectors in
R2, the state |0⟩ = (1, 0) points east and the eigenstate |1⟩ = (0, 1) points north. This does not
mean that |+⟩ is “pointing both north and east at the same time”. It does not, in fact, point in
either of these directions; instead, it points in a third direction, namely north-east.

In other words, if we just look at the vector represented by |+⟩, without considering any
particular basis, it is just a vector pointing in one particular direction, and in this direction
only. The superposition only exists if we insist to represent |+⟩ in this particular eigenbasis,
but there can be another eigenbasis, e.g. the eigenbasis composed of |+⟩ itself along with |−⟩,
in which |+⟩ is not in a superposition.

What this means is that a state only appears to be in a superposition when we choose a
particular observable and represent that state as a superposition of eigenstates with respect to
that observable. But the system itself is still in the same state, regardless of which eigenbasis
we choose. The projections of the state of the system on the basis eigenstates give us the
probability amplitudes relevant to that measurement; for example, in Figure 4.1 we see that the
probability amplitudes to measure |0⟩ or |1⟩ are both 1/

√
2. However, in the basis consisting

of |+⟩ and |−⟩, we instead have that the probability amplitude to measure |+⟩ is 1 and the
probability amplitude to measure |−⟩ is 0.

In the specific case where the qubit is the spin of a spin-1/2 particle, we know that if the qubit
is in the state |+⟩, this means that a measurement of spin along the x axis will yield spin up
with probability 1. We can say, if we want, that the system is in a state of spin up along the x
axis, and this defines the state uniquely. We also see that, in this basis, the system is not in a
superposition; it is just one state.

However, in the basis corresponding to measurement of spin along the z axis, we may write
the state as a superposition, |+⟩ = (|0⟩+ |1⟩) /

√
2. This doesn’t mean that the qubit is in both

the states |0⟩ and |1⟩ “at the same time”; it means that it is in a state where a measurement of
spin along the z axis will yield spin up or spin down with equal probability.

If being in the superposition (|0⟩+ |1⟩) /
√

2 doesn’t mean that the qubit is both |0⟩ and |1⟩
at the same time, perhaps it could mean that the qubit is either |0⟩ or |1⟩, but we just don’t
know which one it is, and when we perform a measurement we will discover which state it
was in all along? Unfortunately, that interpretation doesn’t work either. Theories where the
system is in only one particular unknown (“hidden”) state, but we only discover which one
after we measure it, are called hidden variable theories. They are mostly thought to be incorrect,
since they violate a theorem called Bell’s theorem, which we will learn about in Section 4.3.6.

Some theories of hidden variables that are compatible with Bell’s theorem do exist, but most
physicists don’t believe they could replace quantum mechanics, because they are complicated,
contrived, and non-local; the latter means that they allow faster-than-light or instantaneous
communication29. Indeed, some non-local hidden variable theories, such as de Broglie–Bohm

29This doesn’t necessarily mean the theory allows us to send information faster than light. The components of
the system can communicate with each other faster than light, but not necessarily in a way that we can actually
control or make use of. We will discuss this in more detail in Section 4.3.6.
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theory, require all of the particles in the universe to be able to instantaneously communicate
with each other at all times!

So in conclusion, being in a superposition of two states doesn’t mean being in both the first
state and the second state, but also doesn’t mean being in either the first state or the second
state. Instead, we must conclude that the terms “and” and “or” are classical terms that can
only be used in a classical theory; superposition is a new quantum term, which simply does
not have any classical analogue.

Compare this with our discussion of wave-particle duality in Section 2.1.3. This duality
doesn’t mean that light is “both a wave and a particle”, and it also doesn’t mean that light is
“either a wave or a particle”. What it really means is that the classical concepts of “wave” and
“particle” are not the proper way to describe reality. Similarly, it turns out that the classical
terms “and” and “or” cannot be used to describe reality at the deepest level; for that, we need
to introduce quantum superposition.

4.3 Composite Systems and Quantum Entanglement

4.3.1 The Tensor Product

So far, we have only considered single, isolated physical systems, described by a single Hilbert
space. What if we have more than one system, such as a collection of particles? This calls for
a new axiom:

The Composite System Axiom: Given two physical quantum systems represented by two
Hilbert spacesHA andHB respectively, the tensor product of the two spaces, denoted

HA ⊗HB, (4.46)

is another Hilbert space, representing the composite system which combines the two original
systems. The dimension of the composite Hilbert space is the product of the dimensions of
the individual spaces:

dim (HA ⊗HB) = dimHA · dimHB. (4.47)

For example, the dimension of Cm ⊗Cn is mn.

Given a state |ΨA⟩ inHA and a state |ΨB⟩ inHB, we can use the tensor product to form a new
state inHA ⊗HB:

|ΨA⟩ ⊗ |ΨB⟩ ∈ HA ⊗HB. (4.48)

However, not all states inHA ⊗HB are necessarily of this form; this fact will prove essential
soon, when we discuss entanglement. Furthermore, if |Ai⟩, i ∈ {1, . . . , m} is an orthonormal
basis ofHA and

∣∣Bj
〉
, j ∈ {1, . . . , n} is an orthonormal basis ofHB, then

|Ai⟩ ⊗
∣∣Bj
〉

, i ∈ {1, . . . , m} , j ∈ {1, . . . , n} , (4.49)

is an orthonormal basis of HA ⊗HB. Note that there are mn basis states in total, since the
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dimension of the composite Hilbert space is mn.

The tensor product is linear. This means that for λ ∈ C, |ΨA⟩ ∈ HA, and |ΨB⟩ ∈ HB we have

λ (|ΨA⟩ ⊗ |ΨB⟩) =
(

λ |ΨA⟩
)
⊗ |ΨB⟩ = |ΨA⟩ ⊗

(
λ |ΨB⟩

)
, (4.50)

for |ΨA⟩ , |ΦA⟩ ∈ HA and |ΘB⟩ ∈ HB we have(
|ΨA⟩+ |ΦA⟩

)
⊗ |ΘB⟩ = |ΨA⟩ ⊗ |ΘB⟩+ |ΦA⟩ ⊗ |ΘB⟩ , (4.51)

and for |ΨA⟩ ∈ HA and |ΘB⟩ , |ΩB⟩ ∈ HB we have

|ΨA⟩ ⊗
(
|ΘB⟩+ |ΩB⟩

)
= |ΨA⟩ ⊗ |ΘB⟩+ |ΨA⟩ ⊗ |ΩB⟩ . (4.52)

In particular, notice from (4.50) that scalars commute with the tensor product, so we can
move them in or out of the product as we see fit – just as, until now, we have been moving
scalars in and out of inner and outer products. Importantly, the tensor product itself is not
commutative:

|ΨA⟩ ⊗ |ΨB⟩ ̸= |ΨB⟩ ⊗ |ΨA⟩ . (4.53)

The order matters, since the first state must come from the first Hilbert space, and the second
state must come from the second Hilbert space – which may be a completely different space
with completely different states. For example, in the tensor product C2 ⊗C3 the first state
must be represented by a 2-vector while the second state must be represented by a 3-vector –
so they cannot be interchanged.

Now, if OA is an operator onHA and OB is an operator onHB, then OA ⊗OB is an operator
onHA ⊗HB, which is defined such that each operator acts only on the state coming from the
same space as that operator:(

OA ⊗OB

)(
|ΨA⟩ ⊗ |ΨB⟩

)
=

(
OA |ΨA⟩

)
⊗
(

OB |ΨB⟩
)

. (4.54)

In other words, the first operator in the product OA ⊗OB acts only on the first state in the
product |ΨA⟩ ⊗ |ΨB⟩, and the second operator in the product OA⊗OB acts only on the second
state in the product |ΨA⟩ ⊗ |ΨB⟩. This has to be the case, since e.g. in the tensor product
C2 ⊗C3 the first operator must be represented by a 2× 2 matrix and act on 2-vectors while
the second operator must be represented by a 3× 3 matrix and act on 3-vectors. Note that, as
for the tensor product of states, not all operators inHA ⊗HB are necessarily of this form.

If we have two bras ⟨ΨA| ∈ HA and ⟨ΨB| ∈ HB, their tensor product ⟨ΨA| ⊗ ⟨ΨB| is a bra in
HA ⊗HB, and the inner product of this bra with a ket of the form |ΦA⟩ ⊗ |ΦB⟩ inHA ⊗HB is
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defined by taking the inner products of each bra with the ket from the same space:(
⟨ΨA| ⊗ ⟨ΨB|

)(
|ΦA⟩ ⊗ |ΦB⟩

)
= ⟨ΨA|ΦA⟩⟨ΨB|ΦB⟩. (4.55)

The first bra acts only on the first ket and the second bra acts only on the second ket. Once
again, the inner product must work this way, since for example in C2 ⊗C3 we can only take
the inner product of 2-vectors with 2-vectors and 3-vectors with 3-vectors – the inner product
of a 2-vector with a 3-vector is undefined.

Similarly, if we have two operators OA, PA ∈ HA and two operators OB, PB ∈ HB, then the
composite operator OA ⊗OB ∈ HA ⊗HB acts on the composite operator PA ⊗ PB ∈ HA ⊗HB

in the only way that makes sense, with each operator acting on the operator from the same
space: (

OA ⊗OB

)(
PA ⊗ PB

)
= OAPA ⊗OBPB. (4.56)

Finally, above we stated the Composite System Axiom for two quantum systems, but we can
use it recursively to define the composite Hilbert space of any number of systems: just take
the tensor product of all the Hilbert spaces together,

HA ⊗HB ⊗HC ⊗ . . . (4.57)

Everything we defined above still applies, with the obvious generalizations.

Problem 4.14. Let HA and HB be two Hilbert spaces. Find an isomorphism between the
composite Hilbert spacesHA ⊗HB andHB ⊗HA.

Problem 4.15. LetHA andHB be two Hilbert spaces, let A be an operator inHA, and let B be
an operator inHB.

A. Construct an operator inHA ⊗HB which acts as A does on the states ofHA, but leaves the
states ofHB unchanged.

B. Construct an operator inHA ⊗HB which acts as B does on the states ofHB, but leaves the
states ofHA unchanged.

C. Show that the two operators you constructed commute by calculating their commutator as
defined in (4.36).

4.3.2 Vectors and Matrices in the Composite Hilbert Space

Consider the tensor product Cm ⊗Cn. Since the dimension of this Hilbert space is mn, and
since in any finite-dimensional Hilbert space we know how to represent states as vectors and
operators as matrices of the same dimension as the Hilbert space (as discussed in Sections 3.2.7
and 3.2.15 respectively), we conclude that states in Cm ⊗Cn can be represented as mn-vectors
and operators in Cm ⊗Cn can be represented as mn×mn matrices. In other words, Cm ⊗Cn

is isomorphic to Cmn.
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Explicitly, for two states represented by the vectors30

|Ψ⟩ ≡

 Ψ1
...

Ψm

 ∈ Cm, |Φ⟩ ≡

 Φ1
...

Φn

 ∈ Cn, (4.58)

we define the tensor product as follows:

|Ψ⟩ ⊗ |Φ⟩ ≡

 Ψ1 |Φ⟩
...

Ψm |Φ⟩

 =



Ψ1

 Φ1
...

Φn


...

Ψm

 Φ1
...

Φn




=



Ψ1Φ1
...

Ψ1Φn
...

ΨmΦ1
...

ΨmΦn


∈ Cmn. (4.59)

For example:

(
1
2

)
⊗
(

3
4

)
=


1 ·
(

3
4

)

2 ·
(

3
4

)
 =


1 · 3
1 · 4
2 · 3
2 · 4

 =


3
4
6
8

 . (4.60)

Similarly, for two operators represented by the matrices31

A ≡

 A11 · · · A1m
...

. . .
...

Am1 · · · Amm

 ∈ Cm×m, B ≡

 B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn

 ∈ Cn×n, (4.61)

30Note that before we used the subscript to indicate which space the state belongs to, but now the subscript is
instead a vector index.

31Here, Cn×n denotes the space of n× n complex matrices.

75



we define the tensor product as follows32:

A⊗ B ≡

 A11B · · · A1mB
...

. . .
...

Am1B · · · AmmB



=



A11

 B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn

 · · · A1m

 B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn


...

. . .
...

Am1

 B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn

 · · · Amm

 B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn





=



A11B11 · · · A11B1n · · · A1mB11 · · · A1mB1n
...

. . .
...

...
. . .

...
A11Bn1 · · · A11Bnn · · · A1mBn1 · · · A1mBnn

...
...

. . .
...

...
Am1B11 · · · Am1B1n · · · AmmB11 · · · AmmB1n

...
. . .

...
...

. . .
...

Am1Bn1 · · · Am1Bnn · · · AmmBn1 · · · AmmBnn


∈ Cmn×mn.

For example:

(
0 1
2 0

)
⊗
(

3 0
0 4

)
=


0 ·
(

3 0
0 4

)
1 ·
(

3 0
0 4

)

2 ·
(

3 0
0 4

)
0 ·
(

3 0
0 4

)


=


0 · 3 0 · 0 1 · 3 1 · 0
0 · 0 0 · 4 1 · 0 1 · 4
2 · 3 2 · 0 0 · 3 0 · 0
2 · 0 2 · 4 0 · 0 0 · 4



=


0 0 3 0
0 0 0 4
6 0 0 0
0 8 0 0

 .

32Note that the tensor product of vectors is a special case of the tensor product of matrices, with the vectors
treated as single-column matrices.
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Exercise 4.16. For the specific |Ψ⟩, |Φ⟩, A, and B we used above:

|Ψ⟩ ≡
(

1
2

)
, |Φ⟩ ≡

(
3
4

)
, (4.62)

A ≡
(

0 1
2 0

)
, B ≡

(
3 0
0 4

)
, (4.63)

calculate (
A⊗ B

) (
|Ψ⟩ ⊗ |Φ⟩

)
. (4.64)

Do so in two ways:

1. Directly in the composite Hilbert space33 C2 ⊗ C2 ≃ C4 using the 4× 4 matrix and
4-vector found above.

2. Separately in each of the component spaces using the two 2× 2 matrices and the two
2-vectors (acting with the first matrix on the first vector and the second matrix on the
second vector), and then calculating the tensor product of the results.

Then compare your results and verify that they are the same.

Problem 4.17.

A. Prove that the tensor product preserves the adjoint operation on both vectors and matrices.
That is, (

|Ψ⟩ ⊗ |Φ⟩
)†

= ⟨Ψ| ⊗ ⟨Φ| , (A⊗ B)† = A† ⊗ B†. (4.65)

B. Prove that the tensor product of two Hermitian operators is Hermitian, and the tensor
product of two unitary operators is unitary.

Problem 4.18. Consider the tensor product Cm ⊗ Cn for arbitrary m and n. Show that the
standard basis of Cm ⊗ Cn is obtained by taking the tensor products of the standard basis
states of Cm and Cn.

Exercise 4.19. Calculate the tensor product

|+⟩ ⊗ |−⟩ ⊗ |0⟩ , (4.66)

where |+⟩ and |−⟩ are the +1 and−1 eigenstates of σx respectively, and |0⟩ is the +1 eigenstate
of σz (see Section 4.2.1).

Exercise 4.20.

A. Calculate the tensor product operator

A ≡ Sx ⊗ Sz, (4.67)
33Here, ≃means “isomorphic to”.
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where Sx and Sz were defined in (4.31).

B. Calculate the tensor product state

|Ψ⟩ ≡ |+⟩ ⊗ |1⟩ , (4.68)

where |+⟩ and |1⟩ were defined in Section 4.2.1.

C. Calculate the expectation value ⟨A⟩Ψ.

4.3.3 Quantum Entanglement

Consider a composite system of two qubits. In the computational (standard) basis, each of the
qubits is a superposition of the two basis eigenstates |0⟩ and |1⟩. Let us name the first qubit A
and the second qubit B. In the composite Hilbert space HA ⊗HB, the computational basis
has four eigenstates:

|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩ , (4.69)

where in each of these, the first state is the state of qubit A and the second is the state of qubit
B. Thus |0⟩ ⊗ |0⟩ corresponds to |0⟩ for both qubits, |0⟩ ⊗ |1⟩ corresponds to |0⟩ for qubit A
and |1⟩ for qubit B, |1⟩ ⊗ |0⟩ corresponds to |1⟩ for qubit A and |0⟩ for qubit B, and |1⟩ ⊗ |1⟩
corresponds to |1⟩ for both qubits.

These four eigenstates have the following representations in terms of vectors in C4:

|0⟩ ⊗ |0⟩ =
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

 , |0⟩ ⊗ |1⟩ =
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0

 , (4.70)

|1⟩ ⊗ |0⟩ =
(

0
1

)
⊗
(

1
0

)
=


0
0
1
0

 , |1⟩ ⊗ |1⟩ =
(

0
1

)
⊗
(

0
1

)
=


0
0
0
1

 . (4.71)

So we see that they are, in fact, just the standard basis of C4.

The most general state of both qubits is described as a superposition of all possible combina-
tions:

|Ψ⟩ = α00 |0⟩ ⊗ |0⟩+ α01 |0⟩ ⊗ |1⟩+ α10 |1⟩ ⊗ |0⟩+ α11 |1⟩ ⊗ |1⟩ =


α00

α01

α10

α11

 , (4.72)

where α00, α01, α10, α11 ∈ C and, of course, the coefficients should be chosen such that the state
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is normalized to 1:
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. (4.73)

We would now like to ask: when do the two qubits depend on each other? More precisely,
under what conditions can qubit A be |0⟩ or |1⟩ independently of the state of qubit B, and
vice versa? As we will now see, this depends on the coefficients αij.

A separable state is a state which can be written as just one tensor product instead of a sum of
tensor products, that is, a state of the form

|Ψ⟩ = |ΨA⟩ ⊗ |ΨB⟩ , (4.74)

where |ΨA⟩ is the state of qubit A and |ΨB⟩ is the state of qubit B. If we can write the state in
this way, then we have separated the states from one another, in the sense that whatever value
|ΨA⟩ has is completely independent of the value of |ΨB⟩ (and vice versa). In other words, the
overall state of the composite system is just the tensor product of the independent states of
the individual systems.

A simple example of a separable state would be:

|Ψ⟩ = |0⟩ ⊗ |0⟩ . (4.75)

This just means that both qubits are, with 100% probability, in the state |0⟩:

|ΨA⟩ = |0⟩ , |ΨB⟩ = |0⟩ . (4.76)

A more interesting separable state is:

|Ψ⟩ = 1
2
(|0⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) . (4.77)

To see that it is separable, we simplify it using the distributive property, and get:

|Ψ⟩ = 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩) . (4.78)

In other words, both qubits are in a state where either 0 or 1 is possible with 50% probability,
that is:

|ΨA⟩ =
1√
2
(|0⟩+ |1⟩) , |ΨB⟩ =

1√
2
(|0⟩+ |1⟩) . (4.79)

A state which is not separable is called an entangled state. Here is an example of an entangled
state:

|Ψ⟩ = 1√
2
(|0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩) . (4.80)

No matter how much we try, we can never write it as just one tensor product; it is always
going to be the sum of two tensor products! This means that the state of each qubit is no
longer independent of the state of the other qubit. Indeed, if qubit A is in the state |0⟩ then
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qubit B must be in the state |1⟩ (due to the first term), and if qubit A is in the state |1⟩ then
qubit B must be in the state |0⟩ (due to the second term). This is precisely what it means for
two systems to be entangled.

More generally, consider again a composite system in the state

|Ψ⟩ = α00 |0⟩ ⊗ |0⟩+ α01 |0⟩ ⊗ |1⟩+ α10 |1⟩ ⊗ |0⟩+ α11 |1⟩ ⊗ |1⟩ =


α00

α01

α10

α11

 , (4.81)

where α00, α01, α10, α11 ∈ C. If it is separable, then we should be able to write it in the form

|Ψ⟩ = (β0 |0⟩+ β1 |1⟩)⊗ (γ0 |0⟩+ γ1 |1⟩) , (4.82)

where β0, β1, γ0, γ1 ∈ C. Expanding the last equation, we get

|Ψ⟩ = β0γ0 |0⟩ ⊗ |0⟩+ β0γ1 |0⟩ ⊗ |1⟩+ β1γ0 |1⟩ ⊗ |0⟩+ β1γ1 |1⟩ ⊗ |1⟩ . (4.83)

So we should have:
αij = βiγj, i, j ∈ {0, 1} , (4.84)

or explicitly:

α00 = β0γ0, α01 = β0γ1, α10 = β1γ0, α11 = β1γ1. (4.85)

If this is true, then in particular

α00α11 − α01α10 = (β0γ0) (β1γ1)− (β0γ1) (β1γ0)

= β0β1γ0γ1 − β0β1γ0γ1

= 0.

80



Now, if αij are the components of a matrix34,

α =

(
α00 α01

α10 α11

)
, (4.88)

then the quantity α00α11 − α01α10 is called the determinant of the matrix, denoted det α:

det α ≡ α00α11 − α01α10. (4.89)

We have proven that, if the composite state is separable (not entangled), then the matrix of
the coefficients has vanishing determinant. Below you will prove that this also works in the
opposite direction; thus, a composite state of two qubits is separable if and only if det α = 0.

Let us check this. The state in (4.75) is separable, since it has

det α = 1 · 0− 0 · 0 = 0. (4.90)

The state in (4.77) is also separable, since it has

det α =
1
2
· 1

2
− 1

2
· 1

2
= 0. (4.91)

However, the state in (4.80) is entangled, since it has

det α = 0 · 0− 1√
2
· 1√

2
= −1

2
̸= 0. (4.92)

Unfortunately, this simple rule only works for a composite system of 2 qubits. The problem of
finding whether a given state of a composite system is separable or entangled is called the
separability problem, and it is, for general states, a difficult problem to solve!

Problem 4.21. Prove that, for a composite state of two qubits given by

|Ψ⟩ = α00 |0⟩ ⊗ |0⟩+ α01 |0⟩ ⊗ |1⟩+ α10 |1⟩ ⊗ |0⟩+ α11 |1⟩ ⊗ |1⟩ , (4.93)

34This is actually the matrix that would be obtained if, instead of writing the composite state of two qubits as a
vector in C4, we wrote it as the outer products of the qubits, which would be a 2× 2 matrix. Explicitly, you can
check that:

|0⟩ ⟨0| =
(

1 0
0 0

)
, |0⟩ ⟨1| =

(
0 1
0 0

)
, |1⟩ ⟨0| =

(
0 0
1 0

)
, |1⟩ ⟨1| =

(
0 0
0 1

)
, (4.86)

so in this representation, we would get

|Ψ⟩ = α00 |0⟩ ⟨0|+ α01 |0⟩ ⟨1|+ α10 |1⟩ ⟨0|+ α11 |1⟩ ⟨1| =
(

α00 α01
α10 α11

)
. (4.87)

The reason we do not use the outer product representation for two-qubit states is that writing them as vectors in
C4 allows us to act on them with operators given by 4× 4 matrices, just as we would act on single qubit with
operators given by 2× 2 matrices.
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the state is separable if

det

(
α00 α01

α10 α11

)
= α00α11 − α01α10 = 0. (4.94)

This is the opposite direction to what we proved above, which is that if the determinant is
zero, then the state is separable.

Problem 4.22. Find two separable states and two entangled states of three qubits, and prove
that they are separable/entangled.

4.3.4 The Bell States

Let us define the Bell states, also known as35 EPR states:

∣∣βxy
〉
≡ 1√

2

(
|0⟩ ⊗ |y⟩+ (−1)x |1⟩ ⊗ |1− y⟩

)
, x, y ∈ {0, 1} . (4.95)

Explicitly, the four choices for x and y give:

|β00⟩ ≡
1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) , (4.96)

|β01⟩ ≡
1√
2
(|0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩) , (4.97)

|β10⟩ ≡
1√
2
(|0⟩ ⊗ |0⟩ − |1⟩ ⊗ |1⟩) , (4.98)

|β11⟩ ≡
1√
2
(|0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩) . (4.99)

It is useful to adopt a shorthand notation where we write

|xy⟩ ≡ |x⟩ ⊗ |y⟩ , (4.100)

so

|00⟩ ≡ |0⟩ ⊗ |0⟩ , |01⟩ ≡ |0⟩ ⊗ |1⟩ , |10⟩ ≡ |1⟩ ⊗ |0⟩ , |11⟩ ≡ |1⟩ ⊗ |1⟩ . (4.101)

In this notation, the Bell states are

|β00⟩ ≡
1√
2
(|00⟩+ |11⟩) , (4.102)

|β01⟩ ≡
1√
2
(|01⟩+ |10⟩) , (4.103)

35EPR stands for Einstein, Podolsky, and Rosen.
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|β10⟩ ≡
1√
2
(|00⟩ − |11⟩) , (4.104)

|β11⟩ ≡
1√
2
(|01⟩ − |10⟩) . (4.105)

The Bell states have important applications in quantum information and computation, as we
will see below.

Exercise 4.23. Write down the representations of the four Bell states as 4-vectors in C2 ⊗C2 ≃
C4.

Problem 4.24. Prove that the four Bell states form an orthonormal basis for the composite
Hilbert space of two qubits, by showing that they span that space, are linearly independent,
are orthogonal, and are normalized to 1.

Problem 4.25. Prove that each of the four Bell states is entangled.

Exercise 4.26. Write down the four Bell states in terms of |+⟩ and |−⟩, the eigenstates of σx.
You may wish to use the shorthand notation |±±⟩ ≡ |±⟩ ⊗ |±⟩.

4.3.5 Entanglement Does Not Transmit Information

Now that we have rigorously defined quantum entanglement, let us debunk the most com-
mon misconception associated with it: that quantum entanglement allows us to transmit
information, and in particular, that it allows us to do so faster than the speed of light (or even
instantaneously), in violation of relativity. This is, in fact, not true.

To illustrate this, imagine the following scenario. Alice and Bob create an entangled pair of
qubits, for example in the Bell state

|β01⟩ ≡
1√
2
(|01⟩+ |10⟩) . (4.106)

Alice takes the first qubit in the pair, and Bob takes the second qubit. Alice then stays on Earth,
while Bob embarks on a long journey to Alpha Centauri, about 4.4 light years away. When
Bob gets there, he measures his qubit. He has a 50% chance to observe 0 and a 50% chance to
observe 1. However, if he observes 0 he knows that Alice will surely observe 1 whenever she
measures her qubit, and if he observes 1 he knows that Alice will surely observe 0, since the
qubits must have opposite values.

So it seems that Bob now knows something about Alice’s qubit that he did not know before.
Furthermore, he knows that instantly – even though Alice is 4.4 light years away, and thus
according to relativity, that information should have taken at least 4.4 years to travel between
them. But has any information actually been transferred between them?

The answer is no! All Bob did was observe a random event. Bob cannot control which value
he observes when he measures the qubit, 0 or 1; he can only observe it, and randomly get
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whatever he gets. He gains information about Alice’s qubit, which is completely random,
but he does not receive any specific message from Alice, nor can he transmit any specific
information to Alice by observing his qubit.

In fact, there is a theorem called the no-communication theorem which rigorously proves that no
information can be transmitted using quantum entanglement, whether faster than light or
otherwise. Whatever you measure, it must be completely random. (Unfortunately, the proof
of this theorem uses some advanced tools that we will not learn in this course, so we will not
present it here.)

The fact that a measurement of one qubit determines the measurement of another qubit
might seem like it indicates that some information must be transmitted between the qubits
themselves, so that they “know” about each other’s states. However, there isn’t any actual
need to transmit information between the two entangled qubits in order for them to match
their measurements! After all, the entangled state does not depend on the distance between
the qubits, whether in time or in space; it is simply the combined state of the two qubits,
wherever or whenever they might be.

Consider now the following completely classical scenario. Let’s say I write 0 on one piece
of paper and 1 on another piece of paper. I then put each piece of paper in a separate sealed
envelope, and randomly give one envelope to Alice and the other to Bob. When Bob gets to
Alpha Centauri, he opens his envelope. If he sees 0 he knows that Alice’s envelope says 1,
and if he sees 1 he knows that Alice’s envelope says 0.

Obviously, this does not allow any information to be transmitted between Alice and Bob,
nor does each envelope need to “know” what’s inside the other envelope in order for the
measurements to match. If Bob sees 0, then the piece of paper saying 0 was inside the envelope
all along, and the piece of paper saying 1 was inside Alice’s envelope all along – and vice
versa. The envelopes are classically correlated, and nothing weird is going on. What, then, is
the difference between this classical correlation and quantum entanglement? The answer to
this question can be made precise using Bell’s theorem, which we will now formulate.

4.3.6 Bell’s Theorem and Bell’s Inequality

Bell’s theorem proves that the predictions of quantum theory cannot be explained by theories
of local hidden variables, which we first mentioned in Section 4.2.4. These are deterministic
theories, where measurements of quantum systems such as qubits have pre-existing values.
For example, if we measured 0, then the qubit always had the value 0; we could have, in fact,
predicted the exact value 0, and not just the probability to measure it (which is what quantum
theory can predict), if we knew the value of a “hidden variable” that quantum theory does
not take into account.

Local hidden variable theories are essentially no different than the envelope scenario described
above; the envelope always had the number 0 inside it, and if we were able to look inside the
envelope (at the “hidden variable”) without opening it, we would have been able to make a
deterministic prediction. In this sense, local hidden variable theories have classical correlation,
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and Bell’s theorem proves that quantum entanglement is different, and in a precise sense we
will discuss below, stronger than classical correlation.

Consider the following experiment. I prepare two qubits, and give one to Alice and another to
Bob. Alice can measure one of two different physical observables36 of her qubit, Q or R, both
having two possible outcomes, +1 or −1. Similarly, Bob can measure one of two different
physical observables of his qubit, S or T, both having two possible outcomes, +1 or −1.

We now make two crucial assumptions:

1. Locality: Both Alice and Bob measure their qubits at the same time in different places,
so that their measurements cannot possibly disturb or influence each other without
sending information faster than light. This ensures that the predicted probabilities
for Alice’s and Bob’s measurements are completely independent of each other. This
condition puts the “local” in “local hidden variable theory”.

2. Realism: The values of the physical observables Q, R, S, T exist independently of obser-
vation, that is, they have certain definite values q, r, s, t which are already determined
before any measurements took place, as in the envelope scenario. This condition puts
the “hidden variable” in “local hidden variable theory”.

Together, these two assumptions form the principle of local realism. Classical relativity def-
initely satisfies this principle; there are no faster-than-light interactions, and everything is
deterministic. Local hidden variable theories also satisfy this principle. Non-local hidden
variable theories satisfy realism, but not locality.

Now, whatever the values of q, r, s, t are, we must always have

rs + qs + rt− qt = (r + q) s + (r− q) t = ±2. (4.107)

To see that, note that since r = ±1 and q = ±1, we must either have r + q = 0 if they have
opposite signs, or r − q = 0 if they have the same sign. So one of the terms must always
vanish. In the first case we have (r− q) t = ±2 because t = ±1 and in the second case we
have (r + q) s = ±2 because s = ±1.

Using this information, we can calculate the expectation value of this expression. To do that,
we assign a probability p (q, r, s, t) to each outcome of q, r, s, t. For example, we could simply
assign a uniform probability distribution, where all probabilities are equal:

p (q, r, s, t) =
1
16

, (4.108)

for any values of q, r, s, t. However, the probability distribution can be arbitrary. Even though
we don’t know the probabilities in advance, we we can nonetheless still calculate an upper

36Alice could take, for example,Q = σz and R = σx – which is indeed what we will take below. However, for
our purposes, it doesn’t matter what the physical observables being measured actually are. For that matter, the
physical systems don’t need to be qubits, either; it’s just easier to talk about qubits since they are the simplest
non-trivial quantum systems. This scenario is very general, and does not depend on any specific systems or
observables, which is good since we are trying to capture a general property of quantum theory.
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bound on the expectation value:

⟨RS + QS + RT −QT⟩ = ∑
q,r,s,t∈{−1,+1}

p (q, r, s, t) (rs + qs + rt− qt)

≤ 2 ∑
q,r,s,t∈{−1,+1}

p (q, r, s, t)

= 2.

To go to the second line we used the fact that rs + qs + rt− qt = ±2 , as we proved in (4.107),
and thus it is always less than or equal to 2 for any values of q, r, s, t. To go to the third line we
used the fact that the sum of all possible probabilities must be 1. Also, since the expectation
value function is linear, we have

⟨RS + QS + RT −QT⟩ = ⟨RS⟩+ ⟨QS⟩+ ⟨RT⟩ − ⟨QT⟩ . (4.109)

We thus obtain the Bell inequality37:

⟨RS⟩+ ⟨QS⟩+ ⟨RT⟩ − ⟨QT⟩ ≤ 2. (4.110)

To summarize, we have proven that in any locally realistic theory, the expectation value
considered here must be less than or equal to 2.

Now, let us assume that I prepared the two qubits in the following Bell state:

|β11⟩ =
1√
2
(|01⟩ − |10⟩) . (4.111)

Alice gets the first qubit, and Bob gets the second qubit. We define the observables Q, R, S, T
in terms of the Pauli matrices. Alice measures the observables

Q = σz, R = σx, (4.112)

while Bob measures the observables

S = − 1√
2
(σx + σz) , T = − 1√

2
(σx − σz) . (4.113)

In Exercise 4.27 you will prove that

⟨RS⟩ = ⟨QS⟩ = ⟨RT⟩ = 1√
2

, ⟨QT⟩ = − 1√
2

, (4.114)

where we used the shorthand notation RS ≡ R⊗ S and so on, and the expectations values

37More precisely, there are many different Bell inequalities, and this specific one is called the CHSH (Clauser-
Horne-Shimony-Holt) inequality.
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are calculated with respect to the state |β11⟩. We thus get:

⟨RS⟩+ ⟨QS⟩+ ⟨RT⟩ − ⟨QT⟩ = 2
√

2 ≈ 2.8, (4.115)

which violates the Bell inequality (4.110)!

Importantly, this is not just a theoretical result; many different experiments have verified
that the Bell inequality is indeed violated in nature. This means that our assumptions, either
locality or realism (or both), must be incorrect. In particular, it also means that quantum
entanglement is stronger than classical correlation, which is locally realistic – since with
classical correlation, the best you can do for the expectation value considered here is 2, but
quantum entanglement allows you to get a larger expectation value of 2

√
2.

This pretty much rules out any local hidden variable theory. Instead, we should consider the
following options:

1. Locality is an incorrect assumption38, but realism is correct. This is the essence of non-
local hidden variable theories, such as de Broglie–Bohm theory, which we briefly discussed
in Section 4.2.4 – where the state of each particle depends on the states of every other
particle in the universe! However, most physicists don’t like these theories, since they
are complicated and contrived, and lack the simplicity, elegance, and universality of
quantum theory.

2. Realism is an incorrect assumption, but locality is correct. This is the option that most
physicists prefer, even though it is less intuitive and contradicts our experience with the
classical world. Surely, if you open the fridge to get an apple, the apple has always been
there, even before you observed it; but the same does not have to be true for observing
a qubit.

Another important lesson of Bell’s theorem is that there is something fundamentally profound
and powerful about quantum entanglement, which classical correlation does not have. This
property of quantum entanglement is exactly what makes quantum computers more powerful
than classical computers, as we will see below. It also has some other interesting applica-
tions, such as quantum teleportation (which we will discuss in Section 5.1.2) and quantum
cryptography.

Exercise 4.27. Prove (4.114) by explicitly calculating the expectation values of the given
operators with respect to the state |β11⟩.

38That would be the “spooky action at a distance” you hear about all the time. However, note that even if locality
is violated, this still does not necessarily mean faster-than-light communication is possible. As we discussed in
the previous section, communication between two people requires a form of non-locality that is controllable, so
that Bob can choose which state he measures, and by doing that, send a message to Alice, which she will discover
when she measures her qubit. Thus a theory can be non-local while still violating neither the no-communication
theorem nor relativity.
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Problem 4.28. Consider two qubits in the composite state

|β11⟩ =
1√
2
(|01⟩ − |10⟩) . (4.116)

Since |0⟩ and |1⟩ are the eigenstates of the observable Sz corresponding to positive and
negative spin respectively along the z direction (recall Section 4.2.2), it is easy to see that a
measurement of spin along the z direction will always yield opposite spins for the qubits: if
one qubit has positive spin in the z direction (i.e. |0⟩), then the other qubit must have negative
spin in the z direction (i.e. |1⟩). This state is historically known as a spin singlet.

Now, let v∈R3 be a unit vector pointing in some direction in space (the real space, not the
Hilbert space!). Then the observable Sv defined in (4.33) corresponds to a measurement of spin
along the direction of v. Prove that if the system is in the state |β11⟩, then the measurement of
spin along any direction v will always yield opposite spins for the qubits: if one qubit has
positive spin along the direction v, then the other must have negative spin along the same
direction v.

This is remarkable, since it means if Alice measures her qubit on Earth and Bob measures his
qubit on Alpha Centauri at the same time, and both of them measure spin along the same
direction, then somehow both qubits must “know” to have opposite spins along this direction,
no matter which direction Alice and Bob choose!

4.4 Non-Commuting Observables and the Uncertainty Principle

4.4.1 Commuting and Non-Commuting Observables

In Problem 4.13 we defined the commutator of two operators:

[A, B] ≡ AB− BA. (4.117)

If the operators commute, then AB = BA and thus the commutator vanishes: [A, B] = 0.
Otherwise, AB ̸= BA and the commutator is non-zero: [A, B] ̸= 0. The commutator thus tells
us if the operators commute or not. Note that any operator commutes with itself: [A, A] = 0
for any A.

Problem 4.29. Prove that the commutator is anti-symmetric:

[B, A] = − [A, B] . (4.118)

Problem 4.30. Prove that the commutator is linear:

[A + B, C] = [A, C] + [B, C] , (4.119)

[A, B + C] = [A, B] + [A, C] . (4.120)
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Problem 4.31. Prove that
[A, B]† = [B†, A†]. (4.121)

Problem 4.32. Prove the useful identities

[AB, C] = A [B, C] + [A, C] B, (4.122)

[A, BC] = B [A, C] + [A, B]C. (4.123)

Problem 4.33. Prove the Jacobi identity:

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0. (4.124)

4.4.2 The Uncertainty Principle

When two quantum observables do not commute, we get an uncertainty relation. Uncertainty
is just another name for standard deviation, which we defined in Section 3.3.4. The most
well-known such relation is the position-momentum uncertainty relation39:

∆x∆p ≥ 1
2

. (4.125)

Here, x and p are two Hermitian operators, corresponding to the observables position and
momentum respectively. This inequality means that the product of uncertainty in position ∆x
and the uncertainty in momentum ∆p cannot go below 1/2; it follows that ∆x and ∆p cannot
both be zero at the same time, so we can never know both the position and momentum with
arbitrarily high certainty.

Let us prove this relation for the general case of any two observables represented by Hermitian
operators, A and B, which do not commute:

[A, B] ̸= 0. (4.126)

Recall that the (square of the) standard deviation ∆A of A is given by

(∆A)2 =
〈
(A− ⟨A⟩)2

〉
. (4.127)

We have seen that expectation values in quantum theory are calculated using the inner product
“sandwich”

⟨A⟩ = ⟨Ψ|A|Ψ⟩, (4.128)

where |Ψ⟩ is the state with respect to which the expectation value is calculated. The (square

39Recall that we are using units where h̄ = 1!
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of the) standard deviation is thus

(∆A)2 = ⟨Ψ| (A− ⟨A⟩)2 |Ψ⟩
= ⟨Ψ| (A− ⟨A⟩) (A− ⟨A⟩) |Ψ⟩.

Let us now define a new vector:

|a⟩ = (A− ⟨A⟩) |Ψ⟩. (4.129)

Then we simply have40

(∆A)2 = ⟨a|a⟩ = ∥a∥2 . (4.130)

Similarly, for B we define
|b⟩ = (B− ⟨B⟩) |Ψ⟩, (4.131)

and get
(∆B)2 = ⟨b|b⟩ = ∥b∥2 . (4.132)

The product of the (squares of the) standard deviations in A and B is thus

(∆A)2 (∆B)2 = ∥a∥2 ∥b∥2 . (4.133)

Using the Cauchy-Schwarz inequality (3.153), we have

(∆A)2 (∆B)2 = ∥a∥2 ∥b∥2

≥ |⟨a|b⟩|2

(∗) = (Re⟨a|b⟩)2 + (Im⟨a|b⟩)2

(∗∗) ≥ (Im⟨a|b⟩)2

(∗ ∗ ∗) =
(
⟨a|b⟩ − ⟨b|a⟩

2i

)2

,

where in (∗) we used (3.17), in (∗∗) we used the fact that (Im⟨a|b⟩)2 ≥ 0 since it’s the square
of a real number, and in (∗ ∗ ∗) we used (3.14) and the fact that ⟨b|a⟩ = ⟨a|b⟩∗.

40 A− ⟨A⟩ is the operator A minus the real number ⟨A⟩ times the identity operator 1 (the identity operator is
implied). Thus A− ⟨A⟩ is Hermitian, and the bra of (A− ⟨A⟩) |Ψ⟩ is ⟨Ψ| (A− ⟨A⟩).
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Next, we note that

⟨a|b⟩ = ⟨Ψ| (A− ⟨A⟩) (B− ⟨B⟩) |Ψ⟩
= ⟨(A− ⟨A⟩) (B− ⟨B⟩)⟩
= ⟨AB− A⟨B⟩ − ⟨A⟩B + ⟨A⟩⟨B⟩⟩
= ⟨AB⟩ − ⟨A⟨B⟩⟩ − ⟨⟨A⟩B⟩+ ⟨⟨A⟩⟨B⟩⟩
= ⟨AB⟩ − ⟨A⟩⟨B⟩ − ⟨A⟩⟨B⟩+ ⟨A⟩⟨B⟩
= ⟨AB⟩ − ⟨A⟩⟨B⟩,

where we used the linearity of the expected value, (3.177). Similarly,

⟨b|a⟩ = ⟨BA⟩ − ⟨A⟩⟨B⟩. (4.134)

Thus

⟨a|b⟩ − ⟨b|a⟩ = (⟨AB⟩ − ⟨A⟩⟨B⟩)− (⟨BA⟩ − ⟨A⟩⟨B⟩)
= ⟨AB⟩ − ⟨BA⟩
= ⟨[A, B]⟩,

and so we get

(∆A)2 (∆B)2 ≥
〈

1
2 i

[A, B]
〉2

. (4.135)

Now, by definition, ∆A and ∆B are real and non-negative. If
〈 1

2 i [A, B]
〉

is also real, we could
take the square root (but we have to add an absolute value because it could actually be
negative):

∆A∆B ≥ 1
2
|⟨[A, B]⟩| . (4.136)

You will show in Problem 4.34 that it is indeed always real. Note that the uncertainty relation
we found still depends on the choice of state |Ψ⟩ with which to calculate the expected values
and standard deviations, but sometimes, as in the position-momentum uncertainty relation,
the same relation applies to all states.

As we will explain in more details later, when we discuss continuous systems, the operators x
and p have the commutator

[x, p] = i . (4.137)

By plugging this commutator into the uncertainty relation (4.136), we indeed get the familiar
result

∆x∆p ≥ 1
2

. (4.138)

Problem 4.34. Inequalities are only defined for real numbers, not complex numbers. Let us
prove that if A and B are Hermitian, then ⟨[A, B]⟩ must always be an imaginary number, and
thus

〈 1
2 i [A, B]

〉
is always real, so the inequality we found is well-defined.

91



An anti-Hermitian operator O is an operator which satisfies

O† = −O. (4.139)

Just as a Hermitian operator is the matrix analogue of a real number, an anti-Hermitian
operator is the matrix analogue of an imaginary number.

A. Prove that the eigenvalues of an anti-Hermitian operator are all purely imaginary, as
defined in Problem 3.2.

B. Prove that an anti-Hermitian operator is normal, and thus it has an orthonormal eigenbasis
(see Section 3.2.14).

C. Prove that if A and B are Hermitian, then [A, B] must be anti-Hermitian.

D. Prove that if [A, B] is anti-Hermitian, then the expectation value ⟨[A, B]⟩Ψ is imaginary for
any state |Ψ⟩.

Exercise 4.35. Calculate the uncertainty relation for σx and σy given an arbitrary qubit:

|Ψ⟩ = a |0⟩+ b |1⟩ , |a|2 + |b|2 = 1. (4.140)

That is, find the right-hand side of

∆σx∆σy ≥ (?) . (4.141)

Comment on the consequences of the relation you found for choices of different states, that is,
different values of a and b.

4.4.3 Simultaneous Diagonalization

Why is there uncertainty when two observers don’t commute? Some insight may be gained
from the fact that two Hermitian operators may be simultaneously diagonalizable if and only if
they commute41.

Recall that in Section 3.2.16 we proved that for any Hermitian matrix42 A there exists a unitary
matrix P such that

P† AP = D, (4.142)

where D is a diagonal matrix. Furthermore, the elements on the diagonal are none other than
the eigenvalues of A. This is called diagonalizing the matrix A.

Now, let A1 and A2 be two Hermitian matrices. We say that A1 and A2 are simultaneously

41This is a special case of a more general theorem: a set of diagonalizable matrices commute if and only if they
are simultaneously diagonalizable. Of course, here we are dealing specifically with Hermitian matrices, and such
matrices are always diagonalizable; furthermore, for our purposes it is enough to talk about two matrices rather
than a larger set.

42Or more generally for any normal matrix, which satisfies A† A = AA†. As we mentioned before, both
Hermitian and unitary matrices are special cases of normal matrices.
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diagonalizable if both matrices are diagonalizable using the same unitary matrix P:

P† A1P = D1, P† A2P = D2, (4.143)

where D1 and D2 are two diagonal matrices.

If A1 and A2 are simultaneously diagonalizable, we can invert (4.143) (by multiplying both
sides by P from the left and P† from the right) to find:

A1 = PD1P†, A2 = PD2P†. (4.144)

Then the commutator of the two matrices is

[A1, A2] ≡ A1A2 − A2A1

=
(

PD1P†
) (

PD2P†
)
−
(

PD2P†
) (

PD1P†
)

= PD1

(
P†P

)
D2P† − PD2

(
P†P

)
D1P†

= PD1D2P† − PD2D1P†

= P (D1D2 − D2D1) P†

= P [D1, D2] P†.

However, any two diagonal matrices commute with each other. Indeed, if

D1 ≡

 λ1 0 0

0
. . . 0

0 0 λn

 , D2 ≡

 µ1 0 0

0
. . . 0

0 0 µn

 , (4.145)

then it is easy to see that

D1D2 = D1D2 =

 λ1µ1 0 0

0
. . . 0

0 0 λnµn

 . (4.146)

Therefore [D1, D2] = 0, and we conclude that A1 and A2 commute:

[A1, A2] = 0. (4.147)

It is possible to prove the opposite direction as well: if A1 and A2 commute, then they are
simultaneously diagonalizable. However, we won’t do this here.

So what does this mean? Let A1 and A2 be two commuting observables, represented by
Hermitian operators. Then they are simultaneously diagonalizable. Now, remember that in
Section 3.2.16 we said that the unitary matrix P, which in this case diagonalizes both matrices,
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has for its columns an orthonormal eigenbasis |Bi⟩:

P =

(
|B1⟩ · · · |Bn⟩

)
. (4.148)

By inspecting (4.143) and (4.145), we see that the basis states |Bi⟩ are eigenstates of both A1

and A2, with the eigenvalues:

A1 |Bi⟩ = λi |Bi⟩ , A2 |Bi⟩ = µi |Bi⟩ . (4.149)

This means that the eigenstates |Bi⟩ are states where the system simultaneously has the exact
value λi for the observable A1 and the exact value µi for the observable A2.

Conversely, since this is an if-and-only-if relationship, if A1 and A2 don’t commute, then
one cannot find a basis of eigenstates of both observables simultaneously (since if we found
such a basis, then they would be simultaneously diagonalizable, in contradiction). This is
essentially where the uncertainty principle comes from: if A1 and A2 don’t commute and the
system is in an eigenstate of A1, then in general it can’t also be in an eigenstate of A2. This
means it must instead be in a superposition of eigenstates of A2, so there are many different
possible values for the measurement of A2 with different probabilities. So being certain of the
value of A1 means being necessarily uncertain of the exact value of A2.

Exercise 4.36.

A. Show that the following Hermitian operator commutes with the Pauli operator σx:

A ≡
(

1 −3
−3 1

)
, σx ≡

(
0 1
1 0

)
. (4.150)

Therefore, they are simultaneously diagonalizable.

B. Show that the eigenstates of σx (see Section 4.2.1) are also eigenstates of A, and find their
eigenvalues.

C. Find a unitary matrix P which diagonalizes both A and σx, and find the resulting diagonal
matrices.

4.5 Dynamics, Transformations, and Measurements

4.5.1 Unitary Transformations and Evolution

We have covered almost all of the basic properties of quantum theory. However, notice that
so far we only talked about quantum systems that are in one given state, and never change.
In real life, physical systems change all the time, whether it’s because some transformation
was explicitly done to the system, or simply because time has passed. To account for that in
the mathematical framework of quantum theory, let us introduce a new axiom:
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The Evolution Axiom: If the system is in the state |Ψ1⟩ at some point in time, and in another
state |Ψ2⟩ at another point in time, then the two states must be related by the action of some
unitary operator U:

|Ψ2⟩ = U |Ψ1⟩ . (4.151)

This is called unitary evolution or unitary transformation.

The exact form of U is determined by the specific quantum system in question and the specific
transformation performed, for example rotating the system, moving it in space, or letting it
“move itself” in time (i.e. just waiting for time to pass). All the Evolution Axiom tells us is
that U must be a unitary operator – just like the Observable Axiom tells us that an observable
must be represented by a Hermitian operator, but the exact form of the Hermitian operator
depends on the specific system and the specific observable.

Now, in Section 3.2.13 we proved that unitary operators preserve the inner product between
two states. This means that if we two states |Ψ1⟩ and |Φ1⟩ at one time, and they evolve to
|Ψ2⟩ = U |Ψ1⟩ and |Φ2⟩ = U |Φ1⟩ at another time, then the inner product of the new states
⟨Ψ2|Φ2⟩ is equal to the inner product of the old states ⟨Ψ1|Φ1⟩, because U†U = 1:

⟨Ψ2|Φ2⟩ =
(
⟨Ψ1|U†

)
(U|Φ1⟩) = ⟨Ψ1|U†U|Φ1⟩ = ⟨Ψ1|Φ1⟩. (4.152)

Therefore, probability amplitudes are preserved by unitary evolution.

As a corollary, unitary evolution also preserves the norm of a vector – that is, |Ψ⟩ and U |Ψ⟩
have the same norm:

∥UΨ∥ =
√
⟨Ψ|U†U|Ψ⟩ =

√
⟨Ψ|Ψ⟩ = ∥Ψ∥ . (4.153)

This has to be the case, since quantum states must have norm 1! So if we start with a properly
normalized quantum state, we end up with another properly normalized quantum state.

Furthermore, recall that probabilities must sum to one. This means that, for an orthonormal
eigenbasis |Bi⟩, we must have

n

∑
i=1
|⟨Bi|Ψ⟩|2 = 1, (4.154)

as we indeed proved in Section 4.1.4. Again, since each of the probability amplitudes ⟨Bi|Ψ⟩
is preserved by unitary evolution, we are guaranteed that the probabilities still sum to 1 after
the states have evolved.

Lastly, observe that since any unitary operator is invertible (with the inverse of U being
U−1 = U†), any unitary transformation has an inverse transformation. This means that
unitary evolution is always reversible, and therefore quantum mechanics has time-reversal
symmetry: it works exactly the same forwards in time and backwards in time.

If at time t1 the system is in the state |Ψ1⟩ and at time t2 > t1 the system is in the state |Ψ2⟩,
then they are either related by |Ψ2⟩ = U |Ψ1⟩, evolving forward in time, or |Ψ1⟩ = U† |Ψ2⟩
for the same U, evolving backwards in time. As far as quantum mechanics is concerned,
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there is no distinction between the future and the past, and everything works the same if we
take t 7→ −t so that t2 < t1, as long as we also replace every unitary evolution operator by its
adjoint.

Exercise 4.37. The system was previously in the state

|Ψ1⟩ =
1√
5

(
1
2 i

)
. (4.155)

Now, it is in the state

|Ψ2⟩ =
1√
5

(
2 i
−1

)
. (4.156)

Which unitary operator U was responsible for this evolution (such that |Ψ2⟩ = U |Ψ1⟩)? What
will be the state of the system after the same amount of time has passed again (i.e. after
another evolution with U)?

4.5.2 Quantum Logic Gates

In a classical computer, bits are manipulated using logic gates. In logic terms, these gates treat
0 as “false” and 1 as “true”. Let us list some examples of logic gates.

NOT gets a single bit as input, and outputs 1 minus that bit. In logic terms, it outputs “true”
if it gets “false” and vice versa, so the output is the negation of the input:

Input NOT

0 1
1 0

AND gets two bits as input, and outputs 1 if both bits are 1, otherwise it outputs 0. In logic
terms, it outputs “true” only if both bit A and bit B are “true”:

Input A Input B AND

0 0 0
0 1 0
1 0 0
1 1 1

OR gets two bits as input, and outputs 1 if at least one of the bits is 1, otherwise it outputs 0.
In logic terms, it outputs “true” if either bit A or bit B or both are “true”:

Input A Input B OR

0 0 0
0 1 1
1 0 1
1 1 1
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XOR (eXclusive OR, pronounced “ex or”) gets two bits as input, and outputs 1 if exactly one
of the bits is 1, otherwise it outputs 0. In logic terms, it outputs “true” if either bit A or bit B,
but not both, are “true”:

Input A Input B XOR

0 0 0
0 1 1
1 0 1
1 1 0

In quantum computers we have qubits instead of classical bits, and thus we must use quantum
logic gates, or quantum gates for short. Since they transform qubits from one state to the other,
quantum gates must take the form of unitary operators, by the Evolution Axiom.

As a simple example, let us define the quantum NOT gate, which flips |0⟩ ↔ |1⟩, just like a
classical NOT gate flips 0↔ 1. This gate is none other than the Pauli matrix σx, which is of
course unitary:

NOT ≡ X ≡ σx =

(
0 1
1 0

)
. (4.157)

(The notation X for the NOT gate is common in quantum computing.) Indeed, we have

NOT |0⟩ =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩ , (4.158)

NOT |1⟩ =
(

0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0⟩ . (4.159)

Since unitary transformations are linear, this means that for a general qubit state we have

NOT (a |0⟩+ b |1⟩) = a |1⟩+ b |0⟩ , (4.160)

where of course |a|2 + |b|2 = 1.

In classical computers there is only one non-trivial single-bit gate, the NOT gate; the two
other options would be the gate 0 7→ 0, 1 7→ 0 and the gate 0 7→ 1, 1 7→ 1, which are trivial
gates since their output is fixed and does not depend on the input. However, in quantum
computers, since qubits are in a superposition of |0⟩ and |1⟩, we have more options; in fact,
we have an infinite number of possible single-qubit gates, since any unitary operator can be a
single-qubit gate.

One example of a useful quantum gate is the Z gate, which is just the Pauli matrix σz:

Z ≡ σz =

(
1 0
0 −1

)
, (4.161)
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and has the action

Z |0⟩ =
(

1 0
0 −1

)(
1
0

)
=

(
1
0

)
= |0⟩ , (4.162)

Z |1⟩ =
(

1 0
0 −1

)(
0
1

)
=

(
0
−1

)
= − |1⟩ , (4.163)

so it leaves |0⟩ unchanged but flips the phase of |1⟩.
Another example is the Hadamard gate:

H ≡ 1√
2

(
1 1
1 −1

)
, (4.164)

which turns |0⟩ and |1⟩ (the eigenstates of σz) into |+⟩ and |−⟩ respectively (the eigenstates of
σx):

H |0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2
(|0⟩+ |1⟩) = |+⟩ , (4.165)

H |1⟩ = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2
(|0⟩ − |1⟩) = |−⟩ . (4.166)

What about two-qubit gates? Notice that classical two-bit gates such as AND, OR, and XOR
are irreversible, since if we are given the single output bit of any of these gates, we cannot in
general reconstruct the two input bits. For example, if AND outputs 0, then the inputs could
have been any of 00, 01, or 10. In contrast, quantum gates must be represented by unitary
operators, and as we saw in Section 4.5.1, unitary transformations are reversible. Thus we
cannot use AND, OR, XOR, and other irreversible logic gates in quantum computing.

We can, however, define other two-qubit quantum gates. A very useful example is the
controlled-NOT or CNOT gate. Here, the first qubit controls whether the second qubit gets
flipped or not. If the first qubit is |0⟩, then the second qubit is unchanged; if the first qubit is
|1⟩, then the second qubit is flipped |0⟩ ↔ |1⟩. So, given an input state of two qubits, we have:

CNOT |0⟩ ⊗ |0⟩ = |0⟩ ⊗ |0⟩ , (4.167)

CNOT |0⟩ ⊗ |1⟩ = |0⟩ ⊗ |1⟩ , (4.168)

CNOT |1⟩ ⊗ |0⟩ = |1⟩ ⊗ |1⟩ , (4.169)

CNOT |1⟩ ⊗ |1⟩ = |1⟩ ⊗ |0⟩ . (4.170)
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As you will verify in Exercise 4.38, the CNOT gate can be represented by the unitary matrix

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (4.171)

Alternatively, as you will verify in Exercise 4.39, the CNOT gate can be represented by a tensor
product of outer products:

CNOT = |0⟩ ⟨0| ⊗
(
|0⟩ ⟨0|+ |1⟩ ⟨1|

)
+ |1⟩ ⟨1| ⊗

(
|0⟩ ⟨1|+ |1⟩ ⟨0|

)
. (4.172)

Exercise 4.38. Verify that the matrix definition of the CNOT operator given in (4.171) indeed
has the action described in equations (4.167), (4.168), (4.169), and (4.170).

Exercise 4.39. Verify that the CNOT operator has the outer product representation

CNOT = |0⟩ ⟨0| ⊗
(
|0⟩ ⟨0|+ |1⟩ ⟨1|

)
+ |1⟩ ⟨1| ⊗

(
|0⟩ ⟨1|+ |1⟩ ⟨0|

)
. (4.173)

You can either do so by explicitly calculating the matrix representations of the outer products
and tensor products and adding them up to get the matrix in (4.171), or by showing that this
operator has the required action on the two-qubit basis states.

Exercise 4.40. Show that the Hadamard gate turns |+⟩ back into |0⟩ and |−⟩ back into |1⟩.
Note: You don’t actually have to do an explicit calculation, you can simply use a certain
property of the matrix H itself.

Problem 4.41. Find an outer product representation for the Hadamard operator (4.164).

Problem 4.42. Show how you can generate each of the four entangled Bell states by acting on
the separable state |0⟩ ⊗ |0⟩ with various quantum gates. This means that quantum gates can
be used to generate entanglement if it’s not already there.

4.5.3 The Measurement Axiom (Projective)

In Section 4.1.4, we formulated the Probability Axiom: if the system is in the state |Ψ⟩, then the
probability to measure the eigenvalue λi corresponding to the eigenstate |Bi⟩ of an observable
is given by |⟨Bi|Ψ⟩|2. This axiom was good enough at the time, but after all that we have
learned in the previous sections, we can now see that this axiom is missing two important
things:

1. It doesn’t tell us what happens if we measure just one part of a composite system,

2. It doesn’t tell us about dynamics: what happens to the system after we perform the
measurement.
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To correct that, we now replace the Probability Axiom with a new and improved axiom, which
we call the Measurement Axiom. In order to formulate it, let us recall that in Problem 3.55
you proved that if A is normal (so in particular, if it is Hermitian and thus an observable),
then it has the outer product representation

A =
n

∑
i=1

λi |Bi⟩ ⟨Bi| , (4.174)

where |Bi⟩ is an orthonormal eigenbasis and λi are the eigenvalues of the eigenstates |Bi⟩.
More generally, for any observable we can write

A =
n

∑
i=1

λiPi, (4.175)

where Pi is the projector onto the vector space of the eigenvectors corresponding to the
eigenvalue λi, called the eigenspace of λi (see Problem 4.43). Using projectors allows us to:

1. Deal with the case of degenerate eigenvectors, where two eigenvectors have the same
eigenvalue; so far we have always implicitly assumed that observables do not have any
degenerate eigenvectors. A trivial example of an operator with degenerate eigenvalues
is the identity matrix 1, which has only one eigenvalue – namely, 1 – for which every
vector in the space is an eigenvector.

2. Measure only part of a composite Hilbert space, for example one qubit in a composite
system of two qubits, as we will see below.

In the simple case where there is no degeneracy of eigenvectors and the measurement is
performed on the entire Hilbert space, the projector can take the simple form

Pi ≡ |Bi⟩ ⟨Bi| , (4.176)

and we recover (4.174). Using projectors, we can now define a very general Measurement
Axiom, which employs so-called projective measurements.

The Measurement Axiom (Projective): Consider an observable A of the form

A =
n

∑
i=1

λiPi. (4.177)

If the system is in the state |Ψ⟩, then the probability to measure the eigenvalue λi is given by

⟨Ψ|Pi|Ψ⟩. (4.178)

The measurement yields exactly one of the eigenvalues λi, and after the measurement, the
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system collapses to the state43

|Ψ⟩ 7→ Pi |Ψ⟩√
⟨Ψ|Pi|Ψ⟩

, (4.179)

where Pi is the projector corresponding to the specific eigenvalue λi that was measured.

Problem 4.43. Let A be a normal operator with eigenvalues λi. Each eigenvalue has a
corresponding eigenspace, which is the set of all vectors which have the eigenvalue λi. Prove
that each eigenspace is a vector space by showing that it satisfies the properties of a vector
space as defined in Section 3.2.1.

Exercise 4.44. Find the eigenvalues of the CNOT operator (4.171) and their corresponding
eigenvectors and eigenspaces.

4.5.4 Applications of the Measurement Axiom

Let us now see some examples of the Measurement Axiom in action. First of all, consider a
qubit in the general state

|Ψ⟩ = a |0⟩+ b |1⟩ , |a|2 + |b|2 = 1. (4.180)

The observable corresponding to the eigenbasis |0⟩ , |1⟩ is the Pauli matrix σz, which has the
outer product representation

σz =

(
1 0
0 −1

)
= |0⟩ ⟨0| − |1⟩ ⟨1| . (4.181)

This means that we have44

λ0 = +1, P0 = |0⟩ ⟨0| , (4.182)

λ1 = −1, P1 = |1⟩ ⟨1| . (4.183)

The probability to measure the eigenvalue +1 (corresponding to a value of 0 for the qubit) is
thus

⟨Ψ|P0|Ψ⟩ = ⟨Ψ|
(
|0⟩⟨0|

)
|Ψ⟩ = ⟨Ψ|0⟩⟨0|Ψ⟩ = |⟨0|Ψ⟩|2 = |a|2 , (4.184)

and the probability to measure the eigenvalue −1 (corresponding to a value of 1 for the qubit)
is

⟨Ψ|P1|Ψ⟩ = ⟨Ψ|
(
|1⟩⟨1|

)
|Ψ⟩ = ⟨Ψ|1⟩⟨1|Ψ⟩ = |⟨1|Ψ⟩|2 = |b|2 . (4.185)

43Notice that the square root of the probability is not necessarily the probability amplitude. For example, if the
amplitude is i /2 then the probability is 1/4, but the square root of that is 1/2, which is not the amplitude we
started with! However, recall that the two vectors |Ψ⟩ and ei ϕ |Ψ⟩, which differ by an overall complex phase ei ϕ,
represent the same state. Since the square root of the probability is the same as the amplitude up to a complex
phase, dividing by i /2 or 1/2 both result in the same state.

44Note that I decided to start counting i from 0 to 1 instead of from 1 to 2, so that the subscript of λi will
correspond to the value of the qubit. Also, recall that the eigenvalue of |0⟩ is not 0, it’s −1, and the eigenvalue
of |1⟩ is not 1, it’s +1; this is confusing, but unfortunately it’s standard notation, since qubits are analogous to
classical bits which have the values 0 and 1.
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This indeed matches the old Probability Axiom. The new part is that after the measurement,
if we measured 0, then the system will collapse to the state

|Ψ⟩ 7→ P0 |Ψ⟩√
⟨Ψ|P0|Ψ⟩

=
|0⟩⟨0|Ψ⟩
|a| =

a
|a| |0⟩ ≃ |0⟩ , (4.186)

where by ≃ we mean that a
|a| |0⟩ and |0⟩ are the same state, since they only differ by a complex

phase (see Footnote 43; in polar coordinates we have a = |a| ei ϕ where ei ϕ is the phase of a,
so if we divide a by |a| we are left with just the phase). Similarly, if we measured 1 then the
system will collapse to the state

|Ψ⟩ 7→ P1 |Ψ⟩√
⟨Ψ|P1|Ψ⟩

=
|1⟩⟨1|Ψ⟩
|b| =

b
|b| |1⟩ ≃ |1⟩ . (4.187)

Consider now the general composite state of two qubits given in (4.72):

|Ψ⟩ = α00 |0⟩ ⊗ |0⟩+ α01 |0⟩ ⊗ |1⟩+ α10 |1⟩ ⊗ |0⟩+ α11 |1⟩ ⊗ |1⟩ , (4.188)

which is of course normalized such that

∥Ψ∥2 = |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. (4.189)

We can define an observable corresponding to a measurement of only the first qubit as follows:

σz ⊗ 1 =
(
|0⟩ ⟨0| − |1⟩ ⟨1|

)
⊗ 1, (4.190)

where 1 is the identity operator. So we have

P0 = |0⟩ ⟨0| ⊗ 1, P1 = |1⟩ ⟨1| ⊗ 1. (4.191)

Then the probability to measure 0 for the first qubit is

⟨Ψ|P0|Ψ⟩ = ⟨Ψ|
(
|0⟩⟨0| ⊗ 1

)
|Ψ⟩. (4.192)

102



Let us first calculate45 the action of the operator P0 = |0⟩⟨0| ⊗ 1 on the ket |Ψ⟩:

P0 |Ψ⟩ =
(
|0⟩⟨0| ⊗ 1

)
|Ψ⟩

=
(
|0⟩⟨0| ⊗ 1

) (
α00 |0⟩ ⊗ |0⟩+ α01 |0⟩ ⊗ |1⟩+ α10 |1⟩ ⊗ |0⟩+ α11 |1⟩ ⊗ |1⟩

)
= |0⟩ ⊗

(
α00⟨0|0⟩ |0⟩+ α01⟨0|0⟩ |1⟩+ α10⟨0|1⟩ |0⟩+ α11⟨0|1⟩ |1⟩

)
= |0⟩ ⊗

(
α00 |0⟩+ α01 |1⟩

)
,

since |0⟩ and |1⟩ form an orthonormal basis, so ⟨0|0⟩ = ⟨1|1⟩ = 1 and ⟨0|1⟩ = ⟨1|0⟩ = 0. Then
we act with the bra ⟨Ψ| from the left:

⟨Ψ|P0|Ψ⟩ = ⟨Ψ|
(
|0⟩⟨0| ⊗ 1

)
|Ψ⟩

= ⟨Ψ|
(
|0⟩ ⊗ (α00 |0⟩+ α01 |1⟩)

)
=
(

α∗00 ⟨0| ⊗ ⟨0|+ α∗01 ⟨0| ⊗ ⟨1|+ α∗10 ⟨1| ⊗ ⟨0|+ α∗11 ⟨1| ⊗ ⟨1|
) (
|0⟩ ⊗

(
α00 |0⟩+ α01 |1⟩

))
= α∗00 ⟨0|

(
α00 |0⟩+ α01 |1⟩

)
+ α∗01 ⟨1|

(
α00 |0⟩+ α01 |1⟩

)
= |α00|2 + |α01|2 .

Similarly, we also find that the probability to measure 1 for the first qubit is

⟨Ψ|P1|Ψ⟩ = ⟨Ψ|
(
|1⟩⟨1| ⊗ 1

)
|Ψ⟩ = |α10|2 + |α11|2 . (4.193)

These very complicated calculations tell us what we could have just guessed from common
sense: the total probability to measure |0⟩ is the sum of the probabilities to measure all the
composite states which have |0⟩ as the state of the first qubit, and similarly for |1⟩.
What about collapse? If we measured 0, then the system will collapse to the state

P0 |Ψ⟩√
⟨Ψ|P0|Ψ⟩

=
α00|0⟩ ⊗ |0⟩+ α01|0⟩ ⊗ |1⟩√

|α00|2 + |α01|2
, (4.194)

and if we measured 1, it will collapse to the state

P1 |Ψ⟩√
⟨Ψ|P1|Ψ⟩

=
α10|1⟩ ⊗ |0⟩+ α11|1⟩ ⊗ |1⟩√

|α10|2 + |α11|2
. (4.195)

Again, we could have just guessed the result: the qubit that we measured collapses into either
|0⟩ or |1⟩, while the other qubit stays in a superposition. The denominator is there simply to
normalize the vector so it has norm 1, and can thus represent a state.

45To understand this calculation, you might want to review how tensor products work, which we discussed in
Section 4.3.1.
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Problem 4.45. Consider a composite system of three qubits. Which projectors will you use to
measure only the state of the middle qubit in the |+⟩ , |−⟩ eigenbasis? Which projectors will
you use to measure only the state of the first two qubits in the |0⟩ , |1⟩ eigenbasis?

4.5.5 The Measurement Axiom (Simplified)

Now that we understand how projective measurements works, we can formulate a simpler
version of the Measurement Axiom, which does not require projective measurements, and
will be sufficient for our purposes in the rest of this course.

The Measurement Axiom (Simplified):

• Consider an observable with an eigenbasis of non-degenerate eigenstates |Bi⟩ corre-
sponding to eigenvalues λi. If the system is in the state |Ψ⟩, then the probability to
measure the eigenvalue λi corresponding to the eigenstate |Bi⟩ is given by

|⟨Bi|Ψ⟩|2 . (4.196)

After the measurement, if the eigenvalue λi was measured, then the system will collapse
to the eigenstate |Bi⟩:

|Ψ⟩ 7→ |Bi⟩ . (4.197)

This works the same whether the system in question is composite or not, provided that
the measurement is performed on the entire system at once.

• Now consider a composite system and an observable defined only on part of that
system, with non-degenerate eigenstates |Bi⟩ corresponding to eigenvalues λi. The
total probability to measure the eigenvalue λi is the sum of the probabilities for all
the possible ways in which this eigenvalue can be measured – that is, the sum of the
magnitude-squared of the probability amplitudes of all the composite states where the
part being measured is in the eigenstate |Bi⟩. After the measurement, if the eigenvalue
λi was measured, then only the system we measured will collapse to the eigenstate |Bi⟩,
while the other systems will stay in a superposition.

The process described by the Measurement Axiom, where the state of the system changes after
a measurement, is what people mean when they talk about wavefunction collapse. However,
we haven’t yet defined what a “wavefunction” is. This is because in the modern abstract
formulation of quantum mechanics, which is what we have been studying so far, states are
the fundamental entities, not wavefunctions. We will explain this in more detail when we
define wavefunctions in Section 6.5.

Problem 4.46. A composite system of two qubits is in the state

|Ψ⟩ = 1√
14

(2 |00⟩ − i |10⟩+ 3 |11⟩) . (4.198)
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A measurement is performed on only the first qubit, in the |+⟩ , |−⟩ eigenbasis. For each of
the two possible outcomes, what is the probability to measure that outcome and what will be
the state of the system after the measurement?

Problem 4.47. A composite system of three qubits is in the state

|Ψ⟩ = 1√
35

(|000⟩+ 2 |010⟩ − 3 i |011⟩ − 4 |101⟩+ i |110⟩+ 2 i |111⟩) , (4.199)

where |000⟩ ≡ |0⟩ ⊗ |0⟩ ⊗ |0⟩ and so on. A measurement is performed on only the first two
qubits in the |0⟩ , |1⟩ basis. For each of the four possible outcomes, what is the probability
to measure that outcome and what will be the state of the system after the measurement?
You can either solve this problem by inspection using the simplified axiom, or by explicit
calculation using the projectors you found in Problem 4.45.

4.5.6 Interpretations of Quantum Mechanics and the Measurement Problem

If you consider the collapse process carefully, you will realize that it is actually incompatible
with the Evolution Axiom. This is because the collapse is a type of time evolution: the system
was in the state |Ψ⟩ before the measurement, and will be in one of the eigenstates |Bi⟩ after
the measurement. However, this evolution is not unitary, because it is not invertible.

Given the probabilistic nature of the measurement, the information that the system is currently
in the eigenstate |Bi⟩ is not enough to reconstruct the state |Ψ⟩ of the system before the
measurement, which was a superposition of all the eigenstates |B1⟩ , |B2⟩ , . . . , |Bn⟩. The
information about the coefficients of each eigenstate in the superposition is lost forever.

This incompatibility, and more generally our failure to understand the exact nature of measure-
ment and collapse in quantum mechanics, is called the measurement problem. Many physicists
believe that quantum theory will remain fundamentally incomplete until we manage to solve
the measurement problem, and this is an area of active research. The current approaches
towards solving this problem largely fall into several distinct groups, which more or less
coincide with specific interpretations of quantum mechanics. Let us list some of them.

“Shut up and calculate”: This approach simply ignores the measurement problem. It is not
necessarily associated with any particular interpretation, since it doesn’t care about trying to
interpret the theory in the first place. However, one could associate it with the Copenhagen
interpretation, the earliest interpretation of quantum mechanics, which essentially just accepts
the Measurement Axiom at face value, without attempting to explain why there is a collapse.
This interpretation regards quantum states as merely a tool to calculate probabilities, and
ignores questions like “what was the spin of the particle before I measured it”.

This approach is, by far, the most popular one among physicists, with a recent survey indicat-
ing that around a third of physicists subscribe to the Copenhagen interpretation and another
third don’t have any preferred interpretation. However, this definitely doesn’t mean it is
the “best” approach. It is popular simply because in practice, as long as quantum mechan-
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ics enables us to make accurate predictions, it doesn’t matter how (or even if) the collapse
happens.

The applications of quantum mechanics to theoretical, experimental, and applied physics, as
well as to other fields of science and technology, do not require us to solve the measurement
problem. However, as practical as this approach is, adopting it means ignoring deep and
fundamental questions about the nature of reality which, if answered, could have far-reaching
consequences.

There is no collapse: This approach claims that collapse does not actually happen. The most
well-known example of this approach is the Everett or “many-worlds” interpretation, which gets
rid of the collapse by considering the state of every system to be part of a huge composite state
which describes the entire universe. Measurements then simply correspond to entangling
two parts of that composite state – the system being measured, and the observer. Instead of
a collapse, the observer is now in a superposition of having measured each eigenvalue. For
example, if I measured a qubit, I will then be in a superposition of “I measured 0” and “I
measured 1”. This process is completely unitary (and invertible), thus there is no collapse and
no incompatibility with the Evolution Axiom.

It is a common misconception that the name “many worlds” means measurements somehow
“create” new “parallel universes”, one for each measurement outcome. What really happens
is that there is just one universe, but that universe is in a superposition of many different
possibilities – the sum total of every single superposition of every individual system since
the Big Bang. For example, a toy universe made of n qubits will be in a superposition of
2n different possibilities or “parallel universes”. However, it’s important to stress that the
defining property of this interpretation is not the “many worlds” part – it is the “no collapse”
part!

Let’s see how exactly this works. Say Alice is measuring a qubit. The individual states of the
qubit and Alice before the measurement are

|qubit⟩ = a |0⟩+ b |1⟩ , |Alice⟩ = |Alice hasn’t measured yet⟩ . (4.200)

The composite state of both of them together before the measurement is thus

|Ψ1⟩ ≡ |qubit⟩ ⊗ |Alice⟩ = (a |0⟩+ b |1⟩)⊗ |Alice hasn’t measured yet⟩ . (4.201)

Notice that |Ψ1⟩ is separable – it is just a tensor product of the state of the qubit with the state
of Alice, and those states are independent of each other.

After the qubit is measured, the system undergoes evolution with a unitary operator U into:

|Ψ2⟩ ≡ U |Ψ1⟩ , (4.202)

|Ψ2⟩ = a |0⟩ ⊗ |Alice measured 0⟩+ b |1⟩ ⊗ |Alice measured 1⟩ . (4.203)

Intuitively, we can see that this evolution is unitary because it works similarly to a CNOT
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gate; U essentially checks the state of the qubit, and changes Alice’s state accordingly. In
Problem 4.49 you will find the exact form of this unitary operator. We can see that the new
state |Ψ2⟩ is entangled – the states of the qubit and Alice are now correlated.

We can think of each term in the superposition as a different “parallel universe” or “world”,
but this isn’t quite the same as the typical (incorrect) science-fiction treatment of the many-
worlds interpretation, since the two versions of Alice, the Alice who measured 0 and the Alice
who measured 1, can never communicate with each other, and there is no sense in which you
can “travel” from one “parallel universe” to another – since you can’t change which term in
the superposition you are in!

Crucially, notice that in the calculation we did above, there is no collapse. It looks like there
is a collapse from the point of view of each of the Alices, since the Alice who measured 0
can only access the qubit in the state |0⟩ (with which she is entangled) and the Alice who
measured 1 can only access the qubit in the state |1⟩. However, the overall state of the qubit
and Alice (and more broadly, of the entire universe) in fact evolves in a way that is perfectly
compatible with the Evolution Axiom, and at no point does it reduce to a single eigenstate.

This interpretation is probably the most popular among the approaches which are not Copen-
hagen or “shut up and calculate”. This is perhaps due to its simplicity – it does not introduce
any new assumptions, as most other interpretations do, and in fact it even gets rid of an
assumption, namely the collapse part of the Measurement Axiom, so it arguably makes
quantum theory even simpler.

However, it has several unresolved issues. One of its main problems is that it is unclear
where exactly probabilities come from. If I split into several observers after the measurement,
and the different versions of me collectively measured every single possible outcome of the
measurement, then why is the probability for me to find myself as one observer different from
the probability to find myself as another observer? And what does this probability have to do
with the coefficients of the superposition?

Hidden variables: This approach is associated with interpretations such as De Broglie–Bohm
theory, which we already mentioned in Sections 4.2.4 and 4.3.6 in the context of non-locality.

To remind you, theories of hidden variables involve adding supplemental variables which
make the theory deterministic “behind the scenes”, but we can’t actually know the values of
these variables and use them to make deterministic predictions, since they’re “hidden”. As
the system is deterministic, there is no collapse.

One serious problem with this approach is, as we discussed earlier, that theories of hidden
variables tend to be complicated, and many physicists find them contrived and ad-hoc.
Therefore, if we subscribe to the principle of Occam’s razor, which states that theories with
less assumptions should be preferred, we should discard hidden variables in favor of simpler
interpretations.

Collapse models: This approach modifies quantum mechanics by adding an actual physical
mechanism for collapse. This can be done by assuming that there is a more general type of
evolution, which is compatible with both unitary evolution and collapse. Collapse models
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have the same problem as hidden variable theories; they require additional assumptions and
more complicated equations, which are not necessarily justified except in that they give the
desired results.

For example, one collapse model, the GRW model, assumes that quantum systems collapse
spontaneously – at random, without any relation to measurements. This happens very rarely,
but when you have a big enough composite system with a very large number of subsystems,
it happens frequently enough to explain collapse.

Problem 4.48. There are many other interpretations of quantum mechanics, each attempting
to solve the measurement problem in a different way. We will not discuss them here, but you
are encouraged to look them up and discuss them with your classmates. Which interpretation
is your favorite?

Problem 4.49. Find the unitary operator U in (4.202). Treat Alice as a 3-state system with an
orthonormal basis

|A0⟩ ≡ |Alice measured 0⟩ , (4.204)

|A1⟩ ≡ |Alice measured 1⟩ , (4.205)

|A⟩ ≡ |Alice hasn’t measured yet⟩ . (4.206)

You can either write U as an outer product representation, or as a matrix represented in
the basis constructed from tensor products of the bases of each system, namely |0⟩ , |1⟩ and
|A⟩ , |A0⟩ , |A1⟩. Hint: |A⟩ , |A0⟩ , |A1⟩, represented in their own basis, are just the standard
basis vectors of C3. You may have to do some guesswork regarding the precise form of U.
Prove that the operator U that you found is unitary and that it transforms |Ψ1⟩ into |Ψ2⟩.

4.5.7 Superposition Once Again: Schrödinger’s Cat

Figure 4.2: Schrödinger’s Cat. Source: Found via Google Image Search, original source
unknown.

Suppose that, inside a box, there is a cat and a qubit in the state |+⟩:

|+⟩ = 1√
2
(|0⟩+ |1⟩) . (4.207)
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A measurement apparatus measures the qubit. If it measures 0 (with 50% probability), the cat
dies46. If it measures 1 (with 50% probability), the cat stays alive. Therefore, the state of the
cat is now a superposition of dead and alive (see Figure 4.2):

|cat⟩ = 1√
2
(|dead⟩+ |alive⟩) . (4.208)

Before we open the box and measure the state of the cat, is it “actually” dead, or alive? A
qubit being in a superposition of 0 and 1, compared to a classical bit which can only be either
0 or 1, might not be intuitive, but it is nevertheless an experimental fact. The thought of an
animal being in a superposition of dead and alive, on the other hand, seems absurd.

This thought experiment was suggested by Schrödinger in the early days of quantum me-
chanics to illustrate this discrepancy between the quantum world (of elementary particles,
atoms, qubits, and so on) and the classical world (of cats and everything else we know from
our daily life).

So what exactly is the difference between a qubit and a cat? Well, the qubit has an infinite
number of eigenbases, corresponding to measurements of spin up or down along every possi-
ble direction – as we saw in Section 4.2.2. All of these eigenbases are completely equivalent;
there is no preferred basis. So being in an eigenstate of σz (|0⟩ or |1⟩) isn’t any more “natural”
for the qubit than being in an eigenstate of σx (|+⟩ or |−⟩, which can both be written as a
superposition of |0⟩ and |1⟩).
However, the cat definitely has a preferred eigenbasis: the one composed of eigenstates
of the “is the cat alive” operator, namely |dead⟩ and |alive⟩. There is no operator that has
(|dead⟩+ |alive⟩) /

√
2 as one of its eigenstates (like σx is to σz). This is because the cat is not

a two-state system; it is composed of a huge number of entangled quantum particles that
interact with each other in complicated ways, and the Hilbert space required to describe the
states of the system has many orders of magnitude more than two dimensions.

Now, even a qubit, which is described by a 2-dimensional Hilbert space, is already extremely
fragile. As soon as it interacts with the environment, it gets entangled with it, and loses its
superposition and other quantum properties in a process called quantum decoherence. This is
one of the reasons it is so hard to build quantum computers: qubits will inevitably interact
with the environment, since they cannot be completely isolated. There is a certain time, called
the decoherence time, after which different physical realizations of qubits undergo decoherence;
the time it takes the quantum gate to operate must be shorter than the decoherence time.

It should therefore not be a surprise that the cat, which is incredibly more complicated, is
also incredibly harder to keep in a superposition. The cat is still a quantum system, just
like anything else in the universe, but it is so complicated, that it can’t be in arbitrary states.
Instead, with almost certain probability, it will be in one of the states |dead⟩ or |alive⟩.
Finally, let us address two common misconceptions about Schrödinger’s cat. The first one

46For example, poison is released into the box. This is just a thought experiment, please do not attempt it at
home!
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(which is also a misconception about quantum mechanics in general) is that a conscious
observer is needed to collapse the cat into being alive or dead. In fact, consciousness plays no
role whatsoever in quantum mechanics! There is nothing special about conscious observers
that unconscious measurement devices do not have. In both cases, the interaction of the
quantum system with a larger system – whether it’s a human or a particle detector – causes it
to undergo decoherence and appear classical.

The second misconception occurs when Schrödinger’s cat is invoked in any situation where
the state of something is unknown until it is measured. Usually this takes the form of
“Schrödinger’s X” for some X. For example, I heard the term “Schrödinger’s millionaire” being
used to describe someone who has a lottery ticket which they have not yet checked to see if
it’s the winning ticket; therefore, that person is “both a millionaire and not a millionaire until
the ticket is checked”. However, the fact that you don’t know the state of something until you
measure it is completely trivial, and has nothing to do with Schrödinger’s cat, or even with
quantum mechanics in general. The purpose of the Schrödinger’s cat thought experiment is
to illustrate the difference between the classical and quantum worlds.

4.6 The Foundations of Quantum Theory: Summary

Quantum theory is a fundamental mathematical framework for describing physical systems
in our universe. For discrete systems, which have finite-dimensional Hilbert spaces, we
defined this framework using a set of seven axioms:

1. The System Axiom: Discrete physical systems are represented by complex n-dimensional
Hilbert spaces Cn, where n depends on the specific system.

2. The State Axiom: The states of the system are represented by unit n-vectors in the
system’s Hilbert space, up to a complex phase.

3. The Operator Axiom: The operators on the system, which act on states to produce other
states, are represented by n× n matrices in the system’s Hilbert space.

4. The Observable Axiom: Physical observables in the system are represented by Her-
mitian operators on the system’s Hilbert space. The eigenvalues of the observable
(which are always real, since it’s Hermitian) represent its possible measured values.
The eigenstates of the observable can be used to form an orthonormal eigenbasis of the
Hilbert space.

• Superposition: Any state |Ψ⟩ can be written as a linear combination of the eigen-
states |Bi⟩ of an observable:

|Ψ⟩ =
n

∑
i=1
|Bi⟩⟨Bi|Ψ⟩. (4.209)

5. The Composite System Axiom: The Hilbert space of a composite system is represented
by the tensor product of the individual systems.
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• Entanglement: A state of a composite system that cannot be written as a single
tensor product of states of the individual systems is entangled. Quantum entangle-
ment is a form of correlation between systems, and by Bell’s theorem, it is stronger
than classical correlation.

6. The Evolution Axiom: If the system is in the state |Ψ1⟩ at some point in time, and in
another state |Ψ2⟩ at another point in time, then the two states must be related by the
action of some unitary operator U:

|Ψ2⟩ = U |Ψ1⟩ . (4.210)

7. The Measurement Axiom: Consider an observable A of the form

A =
n

∑
i=1

λiPi. (4.211)

If the system is in the state |Ψ⟩, then the probability to measure the eigenvalue λi is
given by

⟨Ψ|Pi|Ψ⟩. (4.212)

After the measurement, if the eigenvalue λi was measured, then the system will collapse
to the state

|Ψ⟩ 7→ Pi |Ψ⟩√
⟨Ψ|Pi|Ψ⟩

. (4.213)

• The Simplified Measurement Axiom: Consider an observable with an eigenbasis
of non-degenerate eigenstates |Bi⟩ corresponding to eigenvalues λi. If the system
is in the state |Ψ⟩, then the probability to measure the eigenvalue λi corresponding
to the eigenstate |Bi⟩ is given by

|⟨Bi|Ψ⟩|2 . (4.214)

After the measurement, if the eigenvalue λi was measured, then the system will
collapse to the eigenstate |Bi⟩:

|Ψ⟩ 7→ |Bi⟩ . (4.215)

If a measurement is performed only on part of a composite system, the total
probability to measure the eigenvalue λi is the sum of the probabilities for all the
possible ways in which this eigenvalue can be measured. After the measurement,
if the eigenvalue λi was measured, then only the system we measured will collapse
to the eigenstate |Bi⟩, while the other systems will stay in a superposition.

• Expectation Value: If the system is in the state |Ψ⟩, the expectation value for the
measurement of the observable A is given by ⟨Ψ|A|Ψ⟩.

• Uncertainty Principle: If two observables A and B don’t commute, the standard
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deviations of their measurements satisfy the uncertainty relation

∆A∆B ≥ 1
2
|⟨[A, B]⟩| . (4.216)

The mathematical framework we have defined here is not enough on its own; one must
use the framework to define different models, which map the framework to specific physical
systems. A model is a specific choice of the following ingredients:

• A Hilbert space describing a specific physical system,

• Hermitian operators corresponding to specific physical observables that may be mea-
sured for the system,

• Unitary operators corresponding to the time evolution and other possible transforma-
tions of the system,

• The states on which these operators act, which correspond to different configurations of
the system.

In the simple case of a qubit, we saw that the Hilbert space is C2, the Hermitian operators
corresponding to observables are linear combinations of the Pauli matrices, the unitary
operators corresponding to transformations are the quantum gates, and the states are the two
possible values of the qubits, 0 and 1 (and superpositions thereof).

Of course, not every possible model we can make will actually correspond to a physical
system that we can find in nature. However, amazingly, the opposite statement does seem to
be true: every physical system that we find in nature47 can be precisely described by a model
built using the ingredients of quantum theory.

We can think of quantum theory as a sort of language. Just like English is a language with
rules such as grammar and spelling, so is quantum theory a language with its own rules:
observables must be Hermitian operators, possible measurement results are given by the
eigenvalues of these operators, and so on. And just like we can use English to make any
sentence we want, both true and false, we can use quantum theory to make any model we
want, both models that correspond to real physical systems and those that do not.

5 Quantum Information and Computation

Now that we have successfully formulated the mathematical basis of quantum theory, I would
like to discuss two of its modern applications: quantum information and quantum computation.
We will only present a few basic concepts and examples from these cutting-edge areas of
research, but I encourage you to look them up and read more about them.

47Except perhaps general relativity, but we are pretty sure that there is a quantum theory of general relativity,
we just don’t have a consistent formulation of it yet. If time permits, we will discuss this theory – quantum gravity
– at the end of this course.
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5.1 The No-Cloning Theorem and Quantum Teleportation

5.1.1 The No-Cloning Theorem

The no-cloning theorem states that it is impossible to make a copy of an unknown quantum
state. Note that it is possible, in principle, to generate a known quantum state as many times
as we want; all we need to do is repeat whatever process is known to generate that state.
However, if someone gives you an unknown quantum state |Ψ⟩ and doesn’t tell you anything
about it, the no-cloning theorem states that you will never be able to make another copy of
|Ψ⟩.
To prove the theorem, let us assume that we have a “copying operator” U which gets a tensor
product of two states as input, and copies the state from the first slot into the second slot:

U
(
|Ψ⟩ ⊗ |?⟩

)
= |Ψ⟩ ⊗ |Ψ⟩ . (5.1)

The second state |?⟩ in the input can be anything – it doesn’t matter what it was originally,
since it will be overwritten with the state |Ψ⟩ that we are copying.

We are looking for a universal copying operator, which can copy any state |Ψ⟩, even if we
don’t know in advance what the state is. If this operator only works for a specific state |Ψ⟩,
that means we must know what |Ψ⟩ is in advance, in order to choose the specific U that copies
it. Let us use U to copy two states, |Ψ1⟩ and |Ψ2⟩:

U
(
|Ψ1⟩ ⊗ |?⟩

)
= |Ψ1⟩ ⊗ |Ψ1⟩ , (5.2)

U
(
|Ψ2⟩ ⊗ |?⟩

)
= |Ψ2⟩ ⊗ |Ψ2⟩ . (5.3)

We can take the inner product of the last two equations by turning the second equation into a
bra: (

⟨Ψ2| ⊗ ⟨?|
)

U†U
(
|Ψ1⟩ ⊗ |?⟩

)
=
(
⟨Ψ2| ⊗ ⟨Ψ2|

) (
|Ψ1⟩ ⊗ |Ψ1⟩

)
. (5.4)

By the Evolution Axiom, U must be a unitary operator, so we have U†U = 1:(
⟨Ψ2| ⊗ ⟨?|

) (
|Ψ1⟩ ⊗ |?⟩

)
=
(
⟨Ψ2| ⊗ ⟨Ψ2|

) (
|Ψ1⟩ ⊗ |Ψ1⟩

)
. (5.5)

The inner product can be calculated using (4.55):

⟨Ψ2|Ψ1⟩⟨?|?⟩ = ⟨Ψ2|Ψ1⟩⟨Ψ2|Ψ1⟩. (5.6)

On the right-hand side, we have ⟨Ψ2|Ψ1⟩⟨Ψ2|Ψ1⟩ = ⟨Ψ2|Ψ1⟩2:

⟨Ψ2|Ψ1⟩⟨?|?⟩ = ⟨Ψ2|Ψ1⟩2. (5.7)

Finally, even though we haven’t specified the state |?⟩ (since we don’t care what it is), we still
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know it must be normalized such that ⟨?|?⟩ = 1, since otherwise it won’t be a proper state.
Therefore, we obtain:

⟨Ψ2|Ψ1⟩ = ⟨Ψ2|Ψ1⟩2. (5.8)

This is a quadratic equation, so it has two solutions:

• The first solution is ⟨Ψ2|Ψ1⟩ = 1, in which case the states must be the same state:
|Ψ1⟩ = |Ψ2⟩. So U is a copying operator that can only copy one specific state, in
contradiction with our requirement above that U is universal.

• The second solution is ⟨Ψ2|Ψ1⟩ = 0, in which case |Ψ1⟩ and |Ψ2⟩ must be orthogonal.
Again, this means that U cannot be universal, since it can only copy states that are
orthogonal to a specific state, and thus we cannot clone an unknown quantum state.

In conclusion, we have proven that it is impossible to find a unitary operator U that can clone
any arbitrary state |Ψ⟩.
By the way, this is one of the reasons quantum computers are so hard to build. In a classical
computer, we can just make several copies of each bit, and use that for error correction in
case the bit gets corrupted. In a quantum computer, we cannot do that, since we cannot make
copies of a qubit, due to the no-cloning theorem. Still, quantum error correction is possible –
but it is much more complicated.

Problem 5.1. The opposite of the no-cloning theorem is the no-deleting theorem, which states
that given two identical copies48 of the same unknown quantum state, one can never delete
one of them and end up with just one copy. Prove the no-deleting theorem.

Problem 5.2. Remarkably, if cloning a quantum state was possible, it would have allowed
faster-than-light communication! Assuming Alice and Bob each have one qubit of an entan-
gled Bell state, and Bob can make as many copies of his qubit as he wants, show that it is
possible for Alice to send Bob a message instantaneously, regardless of the distance between
them.

This result is especially noteworthy due to the fact that we can freely copy classical bits,
and yet classical correlation definitely does not allow instantaneous communication. This
demonstrates something very special about quantum entanglement, which does not apply to
classical correlation.

5.1.2 Quantum Teleportation

We discovered that it is impossible to copy a quantum state, which is quite surprising.
Quantum teleportation is another surprising discovery, which also serves to illustrate the
powerful consequences of entanglement. We begin with the Bell state (4.102):

|β00⟩ ≡
1√
2
(|00⟩+ |11⟩) , (5.9)

48Of course, deleting just one copy of a quantum state is trivial – all you need to do is measure it!
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where we again used the shorthand notation |xy⟩ ≡ |x⟩ ⊗ |y⟩. Alice takes the first qubit, Bob
takes the second, and they go their separate ways. In this entangled state, if Alice measures 0,
Bob will also measure 0, and if Alice measures 1, Bob will also measure 1.

Later, Alice receives an arbitrary qubit

|Ψ⟩ = a |0⟩+ b |1⟩ , |a|2 + |b|2 = 1, (5.10)

but she does not know the state of the qubit, that is, the coefficients a and b. Alice needs to
transfer this unknown qubit in its entirety to Bob using only two classical bits. This seems
impossible, for two different reasons:

1. The exact state of the qubit is determined by the two arbitrary complex numbers a and
b. Even if Alice did know the values of these numbers, transferring that information
requires much more than two classical bits – in fact, to transmit the precise value of an
arbitrary complex (or even real) number, an infinite number of bits are required.

2. Even if Alice was somehow able to magically transmit two complex numbers using only
two classical bits, there is no way she could determine the values of a and b in the first
place. Any measurement that Alice makes on her qubit will simply result in either 0 or
1; it does not tell Alice anything about the probabilities, not to mention the probability
amplitudes. To get information about the probabilities, Alice must make a large number
of measurements (in fact, an infinite number of them, if she wants to know the precise
values of the probabilities). However, this is impossible due to the no-cloning theorem;
Alice can only measure the qubit once, and that’s it.

To make the impossible possible, Alice can use the fact that her half of the Bell state is
entangled with Bob’s half. All three qubits can be represented together by the composite state

|γ⟩ ≡ |Ψ⟩ ⊗ |β00⟩

=
1√
2
(a |0⟩+ b |1⟩)⊗ (|00⟩+ |11⟩)

=
1√
2

(
a (|000⟩+ |011⟩) + b (|100⟩+ |111⟩)

)
,

where we used the shorthand notation

|xyz⟩ ≡ |x⟩ ⊗ |y⟩ ⊗ |z⟩ . (5.11)

Here the first qubit is the one that is to be teleported from Alice to Bob, the second is Alice’s
half of the Bell state, and the third is Bob’s half.

First, Alice sends the first qubit (the unknown qubit |Ψ⟩) and the second qubit (her half of the
Bell state) through a CNOT gate, which as you recall, flips the second qubit only if the first
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qubit is |1⟩:

CNOT1,2 |γ⟩ =
1√
2

(
a (|000⟩+ |011⟩) + b (|110⟩+ |101⟩)

)
=

1√
2

(
a |0⟩ ⊗ (|00⟩+ |11⟩) + b |1⟩ ⊗ (|10⟩+ |01⟩)

)
.

Here we used the notation CNOT1,2 to indicate that the gate only acts on qubits 1 and 2 out
of the three qubits. Explicitly, this would be the tensor product of the CNOT gate on the left
with the 2× 2 identity matrix on the right:

CNOT1,2 ≡ CNOT⊗ 1 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⊗
(

1 0
0 1

)
. (5.12)

Next, she sends the first qubit through the Hadamard gate, which as you recall, takes |0⟩ to
|+⟩ ≡ (|0⟩+ |1⟩) /

√
2 and |1⟩ to |−⟩ ≡ (|0⟩ − |1⟩) /

√
2:

H1 ·CNOT1,2 |γ⟩ =
1√
2

(
a |+⟩ ⊗ (|00⟩+ |11⟩) + b |−⟩ ⊗ (|10⟩+ |01⟩)

)
=

1
2

(
a (|0⟩+ |1⟩)⊗ (|00⟩+ |11⟩) + b (|0⟩ − |1⟩)⊗ (|10⟩+ |01⟩)

)
=

1
2

(
a ((|000⟩+ |011⟩) + |100⟩+ |111⟩) + b (|010⟩+ |001⟩ − |110⟩ − |101⟩)

)
=

1
2

a (|00⟩ ⊗ |0⟩+ |01⟩ ⊗ |1⟩+ |10⟩ ⊗ |0⟩+ |11⟩ ⊗ |1⟩) +

+
1
2

b (|01⟩ ⊗ |0⟩+ |00⟩ ⊗ |1⟩ − |11⟩ ⊗ |0⟩ − |10⟩ ⊗ |1⟩) .

Again, the notation H1 means we act with the Hadamard gate only on the first qubit:

H1 ≡ H ⊗ 1⊗ 1 =
1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

)
⊗
(

1 0
0 1

)
. (5.13)

We can rearrange the transformed state as follows:

H1 ·CNOT1,2 |γ⟩ =
1
2
|00⟩ ⊗ (a |0⟩+ b |1⟩) +

+
1
2
|01⟩ ⊗ (a |1⟩+ b |0⟩) +

+
1
2
|10⟩ ⊗ (a |0⟩ − b |1⟩) +

+
1
2
|11⟩ ⊗ (a |1⟩ − b |0⟩) .
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Finally, Alice performs a measurement on the first two qubits (the one to be teleported, and
her half of the Bell state), and obtains one of four results: 00, 01, 10, or 11. These are two
classical bits, which she can then send to Bob. With this information, Bob can read from
the last equation exactly which operations he has to perform on his qubit (which you will
determine in Problem 5.4) in order to obtain the original qubit |Ψ⟩ = a |0⟩+ b |1⟩. The qubit
has been successfully teleported from Alice to Bob!

Note that since Alice measured the original qubit, it collapsed and its quantum state has been
destroyed. Therefore, quantum teleportation does not violate the no-cloning theorem; the
state of the qubit was not cloned or copied, it was just moved from one qubit to another. Also,
since Alice had to send two classical bits to Bob – for example through a cable or radio waves –
the speed of teleportation is limited by the speed of light, and there is no violation of relativity.

Finally, since quantum teleportation requires Alice and Bob to already have one half of
an entangled pair each, and the entanglement is destroyed in the process due to Alice’s
measurement, the number of qubits they can teleport is limited by the number of entangled
pairs they have. Once they run out of entangled pairs, they can no longer teleport any qubits
until they physically exchange more entangled pairs. This means that you can’t just establish
two teleportation stations on, say, two planets, and teleport qubits between them forever; you
will have to actually send a spaceship from one planet to the other with a fresh supply of
entangled particles every once in a while.

Problem 5.3. Quantum teleportation has been demonstrated experimentally in many different
experiments, over distances of up to 1400 km, and not just with qubits but even with more
complicated systems. Whenever a new quantum teleportation experiment happens, articles
appear in the media with sensationalist headlines such as “scientists demonstrate teleportation
is possible!” or “is teleportation closer than we think?”, where by “teleportation” they actually
mean the science-fiction concept of “teleportation”, where a macroscopic object is sent from
one place to another without going through the space in between. Is the word “teleportation”
in “quantum teleportation” indeed justified? In what ways is quantum teleportation the same
as science-fiction teleportation, and in what ways is it different?

Problem 5.4. For each of the four results of Alice’s measurement, 00, 01, 10, and 11, determine
which unitary transformations Bob must perform on his qubit in order to obtain the original
|Ψ⟩ = a |0⟩+ b |1⟩.

Problem 5.5. Write a computer program49 that gets an arbitrary composite state of n qubits
as input and allows the user to perform the following actions:

• Analyze whether or not any two of the qubits are entangled.

• Act on one or more of the qubits with a quantum gate; for example, act with Hadamard
on one qubit or with CNOT on two qubits.

49As in Problem 3.65, I recommend either Mathematica or Python, but feel free to use whatever language you
like.
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• Simulate a measurement of one or more of the qubits as dictated by the Projective
Measurement Axiom, with the result determined randomly according to the appropriate
probability distribution, and the state collapsing after the measurement according to the
value that was measured.

Use your program to simulate quantum teleportation, and show that it indeed works.

5.2 Quantum Algorithms

5.2.1 Quantum Parallelism

It’s a common misconception that quantum computers work by using superposition to
“calculate the answer for every possible combination of qubits in parallel”. As the claim goes,
if you have a quantum computer with n qubits, then because each qubit can be “0 and 1 at the
same time”, then you can operate on all 2n possible combinations at once.

You’ve probably already heard this incorrect claim before – perhaps even from someone with
a PhD in physics! This misconception stems from the more general misconception about the
meaning of superposition which we discussed in Section 4.2.4. Sure, it would have been great
if this kind of parallelism was actually possible... but unfortunately, it’s not.

So how do quantum computers actually work? Generally, they make clever use of properties
of quantum states, such as superposition, entanglement, and interference, to solve certain
problems. Just as classical computers operate by sending one or more classical bits through
classical logic gates, quantum computers operate by sending one or more qubits through
quantum logic gates (recall Section 4.5.2). The arrangement of gates is called a quantum circuit,
and algorithms which make use of qubits and quantum gates are called quantum algorithms.

Even though quantum computers don’t really “calculate everything in parallel”, there is
still a concept called quantum parallelism which is used in most quantum algorithms. Let us
demonstrate it with a simple example. Consider a function f (x) : {0, 1} → {0, 1} which
takes one bit as input and gives one bit as output. There are, in fact, exactly 4 such functions,
because each of the input bits 0 or 1 can be sent to either 0 or 1 as output:

f (x) = 0, f (x) = 1, f (x) = x, f (x) = 1− x. (5.14)

Say have a quantum computer which can manipulate two qubits. Let U f be a unitary operator
which transforms any composite 2-qubit state |x, y⟩, where x, y ∈ {0, 1}, as follows:

U f |x, y⟩ = |x, y⊕ f (x)⟩ , (5.15)

where ⊕means addition modulo 2, that is,

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0. (5.16)

The form of U f depends on the choice of f (x). For example, if f (x) = 0, then U f is simply
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the identity operator. In Problem 5.6 you will find the exact form of U f for each choice of f (x)
and see that it is indeed unitary.

We assume that initially, the state of the two qubits in our quantum computer is

|Ψ⟩ = |0⟩ ⊗ |0⟩ ≡ |00⟩ . (5.17)

The first qubit, which will store the input, is called the data register, and the second qubit,
which will store the output, is called the target register. We now build a quantum circuit as
follows. First, recall the Hadamard gate (4.164):

H ≡ 1√
2

(
1 1
1 −1

)
, (5.18)

which acts as follows:
H |0⟩ = 1√

2
(|0⟩+ |1⟩) , (5.19)

H |1⟩ = 1√
2
(|0⟩ − |1⟩) . (5.20)

Let us apply it to the first qubit of |Ψ⟩:

H1 |Ψ⟩ =
1√
2
(|0⟩+ |1⟩)⊗ |0⟩

=
1√
2
(|00⟩+ |10⟩) .

We now apply U f to this state. Since U f is a linear operator, it acts on both terms in the
superposition independently:

U f H1 |Ψ⟩ =
1√
2
(|0, f (0)⟩+ |1, f (1)⟩) . (5.21)

Even though we applied U f only once, the state now contains information about the value of
f (x) for both 0 and 1! This is an example of quantum parallelism. Does this actually mean
we “calculated all the possibilities in parallel”, as the common misconception says? Not
exactly. The state is still in a superposition; there is no way to tell the values of f (x) from
the state, since we don’t know the state; we can only measure the state, and the result of
the measurement will be either |0, f (0)⟩ or |1, f (1)⟩ with probability 1/2. Thus we can only
know one of the values of f (x), chosen at random.

Problem 5.6. Find the form of the operator U f described above for each possible choice of
f (x) and prove that it is indeed unitary for each choice.

Exercise 5.7. For each of the functions f (x) = x and f (x) = 1− x, find the matrix represen-
tation of U f H1 and show that it takes the vector |Ψ⟩ = |00⟩ to the Bell states |β00⟩ and |β01⟩
respectively, as given in (4.102) and (4.103).
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5.2.2 Deutsch’s algorithm

If we can only know one of the values of f (x), and not all of them, then what’s the point
of quantum parallelism? Well, the point isn’t to know all the values at once; it’s to take
advantage of the parallelism to find relations between the different values. Consider, for
example, the problem of determining whether f (x) is constant or not.

Classically, it is clear that we must evaluate both f (0) and f (1). The function is constant
if f (0) = f (1) or not constant if f (0) ̸= f (1), but we must know both values to find the
answer. However, with a quantum computer, that is not the case. We can determine if the
function is constant without knowing both of its values, and in fact, without knowing any of
its values!

This can be done using Deutsch’s algorithm. In this algorithm, we start with the state

|Ψ⟩ = |0⟩ ⊗ |1⟩ ≡ |01⟩ , (5.22)

and then act on both qubits with a Hadamard gate:

H12 |Ψ⟩ =
1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩ − |1⟩) . (5.23)

Next, we notice that

U f

(
|x⟩ ⊗ 1√

2
(|0⟩ − |1⟩)

)
= |x⟩ ⊗ 1√

2
(| f (x)⟩ − |1 + f (x)⟩) . (5.24)

On the right-hand side, we have

1√
2
(| f (x)⟩ − |1 + f (x)⟩) =


1√
2
(|0⟩ − |1⟩) f (x) = 0,

1√
2
(|1⟩ − |0⟩) f (x) = 1,

= (−1) f (x) 1√
2
(|0⟩ − |1⟩) ,

which means that

U f

(
|x⟩ ⊗ 1√

2
(|0⟩ − |1⟩)

)
= (−1) f (x) |x⟩ ⊗ 1√

2
(|0⟩ − |1⟩) . (5.25)

Using this information, we can act with U f on the full state:

U f H12 |Ψ⟩ =
1√
2

(
(−1) f (0) |0⟩+ (−1) f (1) |1⟩

)
⊗ 1√

2
(|0⟩ − |1⟩) . (5.26)

If f (x) is constant, then f (0) = f (1), and both terms in the first qubit have the same sign,
either both + or both −. However, if f (x) is not constant, then the terms will have opposite
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signs, one + and one −. In other words:

U f H12 |Ψ⟩ =

±
1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩ − |1⟩) f (0) = f (1) ,

± 1√
2
(|0⟩ − |1⟩)⊗ 1√

2
(|0⟩ − |1⟩) f (0) ̸= f (1) .

(5.27)

Next, we pass the first qubit through a Hadamard gate again:

H1U f H12 |Ψ⟩ =

± |0⟩ ⊗
1√
2
(|0⟩ − |1⟩) f (0) = f (1) ,

± |1⟩ ⊗ 1√
2
(|0⟩ − |1⟩) f (0) ̸= f (1) ,

(5.28)

where we used the fact that the Hadamard gate is its own inverse:

H
(

1√
2
(|0⟩+ |1⟩)

)
=

1√
2

(
1√
2
(|0⟩+ |1⟩) + 1√

2
(|0⟩ − |1⟩)

)
= |0⟩ , (5.29)

H
(

1√
2
(|0⟩ − |1⟩)

)
=

1√
2

(
1√
2
(|0⟩+ |1⟩)− 1√

2
(|0⟩ − |1⟩)

)
= |1⟩ . (5.30)

Finally, we note that

f (0)⊕ f (1) =

{
0 f (0) = f (1) ,

1 f (0) ̸= f (1) ,
(5.31)

so we can write concisely

H1U f H12 |Ψ⟩ = ± | f (0)⊕ f (1)⟩ ⊗ 1√
2
(|0⟩ − |1⟩) . (5.32)

To determine if f (x) is constant or not, all we need to do is simply to measure the first qubit.
If it’s 0, then we know f (x) is constant, and if it’s 1, then we know f (x) is not constant!

Exercise 5.8. For each of the functions f (x) = 0 (constant) and f (x) = x (not constant), find
the matrix representation of H1U f H12 and demonstrate by explicit matrix multiplication that
it takes the vector |Ψ⟩ = |01⟩ to a state of the form (5.32).

5.2.3 The Deutsch-Jozsa Algorithm

You may be asking yourself: okay, we can determine if the function is constant, but so what?
We could also just calculate both its values. Well, imagine now that f (x) is much more
complicated. Instead of getting just one bit as input, it gets n bits. This means that the input
can be any integer between 0 and 2n − 1, as can be seen from the following table:
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Binary (n bits) Decimal

000 . . . 000 0
000 . . . 001 1
000 . . . 010 2
000 . . . 011 3

...
...

111 . . . 100 2n − 4
111 . . . 101 2n − 3
111 . . . 110 2n − 2
111 . . . 111 2n − 1

For example, for the case of n = 3 we have:

Binary (3 bits) Decimal

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

In this case 2n = 8, so 2n − 1 = 7. For a large number of bits, the number of possible input
values increases exponentially. For example, if we have n = 64 bits, then the maximum input
value is 264 − 1 ≈ 1.8× 1019.

Assume that we are given the information that f (x) is one of two kinds of functions:

1. A constant function, that is, f (x) always gives the same value regardless of the input;
either f (x) = 0 for all x or f (x) = 1 for all x.

2. A balanced function, that is, f (x) = 0 for exactly half of all of possible values of x and
f (x) = 1 for the other half.

f (x) can never be anything in between, e.g. equal to 0 for all values of x except one; it must
be one of these two options. The problem is now to determine whether f (x) is constant or
balanced.

With a classical computer, in the best case scenario, we only need to calculate f (x) for two
different values of x. For example, if f (0) = 0 and f (1) = 1, then we immediately know that
f (x) cannot be constant, and thus it must be balanced. However, in the worst case scenario
we will have to calculate f (x) for 2n−1 + 1 different values of x.

The worst case scenario occurs when the first 2n−1 values (i.e. half of all the possible values)
all turn out the be the same. That is still not enough to know if the function is constant or
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balanced; it could still be either of the two. We must calculate one more value, and if that is
also the same, then we know the function must be constant, otherwise it must be balanced.
Hence the total number of calculations required is 2n−1 + 1.

This means that we may need to calculate f (x) for a very large number of values. For example,
if n = 64, then we may need to make up to 263 + 1 ≈ 9.2× 1018 calculations. Even if each
calculation only takes the classical computer one microsecond (a millionth of a second), it
would still take around 300,000 years to finish all the required calculations in the worst-case
scenario!

Things become much easier if we happen to have a quantum computer with n + 1 qubits.
The algorithm is a straightforward generalization of Deutsch’s algorithm, replacing the single
input qubit with n input qubits. We start in the initial state

|Ψ⟩ = |0⟩⊗n ⊗ |1⟩ , (5.33)

where the notation |0⟩⊗n, the order-n tensor power of |0⟩, means “the tensor product of |0⟩
with itself n times”, that is,

|0⟩⊗n ≡ |0⟩ ⊗ · · · ⊗ |0⟩︸ ︷︷ ︸
n copies

. (5.34)

Let us send each of the first n qubits through a Hadamard gate. This is called a Hadamard
transform. We get:

H1,...,n |0⟩⊗n =
1√
2
(|0⟩+ |1⟩)⊗ · · · ⊗ 1√

2
(|0⟩+ |1⟩)︸ ︷︷ ︸

n copies

. (5.35)

Consider, for clarity, the case of n = 3. Then we have:

H123 |0⟩⊗3 =
1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

=
1√
23

(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩+ |111⟩) ,

or in other words, H123 |0⟩⊗3 is a superposition of all the possible combinations of 3 qubits,
with equal probabilities. We can write this in a compact notation as follows:

H123 |0⟩⊗3 =
1√
23 ∑

x∈{0,1}3

|x⟩ , (5.36)

where the notation {0, 1}3 means “all the possible combinations of 3 bits”, and as we have seen
in the table above, is equivalent to a sum over the integers from 0 to 23 − 1 = 7. Generalizing
to n bits, we see that:

H1,...,n |0⟩⊗n =
1√
2n ∑

x∈{0,1}n
|x⟩ , (5.37)
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where now the sum on x is over all n-bit integers, so from 0 to 2n − 1. The Hadamard
transform thus takes n qubits in the state |0⟩ and transforms them into a superposition of
every possible combination of n qubits with equal probabilities. In conclusion, applying this
to the first n qubits of the full state |Ψ⟩ = |0⟩⊗n ⊗ |1⟩, we get:

H1,...,n |Ψ⟩ =
1√
2n ∑

x∈{0,1}n
|x⟩ ⊗ |1⟩ . (5.38)

Let us also send the target qubit, number n + 1, which started in the state |1⟩, through the
Hadamard gate:

Hn+1H1,...,n |Ψ⟩ =
1√
2n ∑

x∈{0,1}n
|x⟩ ⊗ 1√

2
(|0⟩ − |1⟩) . (5.39)

We now use the same U f from (5.15). In our discussion of Deutsch’s algorithm, we found in
(5.25) that

U f

(
|x⟩ ⊗ 1√

2
(|0⟩ − |1⟩)

)
= (−1) f (x) |x⟩ ⊗ 1√

2
(|0⟩ − |1⟩) . (5.40)

Therefore
U f Hn+1H1,...,n |Ψ⟩ =

1√
2n ∑

x∈{0,1}n
(−1) f (x) |x⟩ ⊗ 1√

2
(|0⟩ − |1⟩) . (5.41)

Notice that we now automatically get the results of calculating f (x), all 2n of them, in the
amplitudes of each state in the superposition, even though we never actually calculated the
function for each input individually!

However, as I stressed before, this information cannot actually be obtained, since we need to
perform a measurement, and we will get only one value of x chosen at random; and even
then, we won’t actually know the value of f (x) for that x, since it’s hidden in the amplitude.
The amplitude determines the probability, but we cannot measure it directly, and even the
probability is actually determined by the magnitude-squared of the amplitude, which means
we lose the phase (−1) f (x) in any case.

Nonetheless, there is still a clever way to extract the information we want – whether f (x) is
constant or balanced – by taking advantage of quantum interference. That it, we make all
the different amplitudes interfere with each other constructively or destructively in a specific
way. Let us see how this works.

The action of the Hadamard gate on one qubit can be written succinctly as follows:

H |x⟩ = 1√
2

(
|0⟩+ (−1)x |1⟩

)
, x ∈ {0, 1} . (5.42)

You can check that this works for each of the options x = 0 and x = 1. We can write it even
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more compactly as follows:

H |x⟩ = 1√
2

∑
z∈{0,1}

(−1)xz |z⟩ , x, z ∈ {0, 1} . (5.43)

Let us consider how the Hadamard transform acts on an n-qubit state |x⟩ for some x ∈ {0, 1}n.
Explicitly, the state is

|x⟩ ≡ |x1, . . . , xn⟩ ≡ |x1⟩ ⊗ · · · ⊗ |xn⟩ , xi ∈ {0, 1} for all i ∈ {0, . . . , n} . (5.44)

Thus:

H1,...,n |x⟩ =
1√
2

∑
z1∈{0,1}

(−1)x1z1 |z1⟩ ⊗ · · · ⊗
1√
2

∑
zn∈{0,1}

(−1)xnzn |zn⟩

=
1√
2n ∑

z1,...,zn∈{0,1}
(−1)x1z1+...+xnzn |z1⟩ ⊗ · · · ⊗ |zn⟩ ,

where we simply combined all the phases (−1)xizi into one.

Just as we treat x1, . . . , xn as the bits of an integer x between 0 and 2n − 1, we can also treat
z1, . . . , zn as the bits of an integer z. We can then define a bitwise inner product:

x⊙ z ≡ x1z1 + . . . + xnzn. (5.45)

This allows us to write the result of the Hadamard transform simply as:

H1,...,n |x⟩ =
1√
2n ∑

z∈{0,1}n
(−1)x⊙z |z⟩ . (5.46)

Using this equation, we can now calculate the Hadamard transform of the first n qubits of
(5.41):

H1,...,nU f Hn+1H1,...,n |Ψ⟩ =
1√
2n ∑

x∈{0,1}n
(−1) f (x)

(
H1,...,n |x⟩

)
⊗ 1√

2
(|0⟩ − |1⟩)

=
1√
2n ∑

x∈{0,1}n
(−1) f (x)

 1√
2n ∑

z∈{0,1}n
(−1)x⊙z |z⟩

⊗ 1√
2
(|0⟩ − |1⟩)

=
1
2n ∑

x,z∈{0,1}n
(−1)x⊙z+ f (x) |z⟩ ⊗ 1√

2
(|0⟩ − |1⟩) .

We can write this in a more suggestive way as follows:

H1,...,nU f Hn+1H1,...,n |Ψ⟩ = ∑
z∈{0,1}n

 1
2n ∑

x∈{0,1}n
(−1)x⊙z+ f (x)

 |z⟩ ⊗ 1√
2
(|0⟩ − |1⟩) . (5.47)
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This means that, when we measure the first n qubits, the amplitude to measure the integer z
is given by the sum:

A (z) ≡ 1
2n ∑

x∈{0,1}n
(−1)x⊙z+ f (x) . (5.48)

Consider specifically the amplitude to measure z = 0, that is, the term in the superposition
where all n qubits z1, . . . , zn are zero. In that case x⊙ z = 0, so the amplitude will simply be:

A (0) =
1
2n ∑

x∈{0,1}n
(−1) f (x) . (5.49)

The sum will depend on which of the two possible kinds of f (x) we have:

• If f (x) is constant, then we have

A (0) =

{
1
2n ∑x∈{0,1}n (+1) = +1 f (x) = 0,
1
2n ∑x∈{0,1}n (−1) = −1 f (x) = 1.

(5.50)

In each case, we are summing over 2n terms which are all the same (either +1 or −1),
and then dividing by 2n, so the result is just +1 or −1 depending on the constant value
of f (x). But this means that the amplitude has magnitude 1, so the probability to
measure z = 0 is |A (0)|2 = 1. In other words, if f (x) is constant, then we will always
measure z = 0, with 100% probability, and we can never measure any other values for
z, since they must have a 0% probability. Notice that in this case we got constructive
interference between the amplitudes.

• If f (x) is balanced, then it is equal to 0 for exactly half the values of x and to 1 for the
other half. Therefore, in the sum ∑x∈{0,1}n (−1) f (x), half the terms will be +1 and half
will be −1. The terms will exactly cancel each other, and the amplitude will be zero, so
the probability to measure z = 0 is |A (0)|2 = 0. In other words, if f (x) is balanced,
then we will never measure z = 0, since that outcome has 0% probability. Notice that in
this case we got destructive interference between the amplitudes.

In conclusion, if we measure z = 0 (all qubits are 0) then we know for sure that f (x) is
constant, and if we measure z ̸= 0 (at least one qubit is 1) then we know for sure that f (x) is
balanced. We found this just by passing the qubits through a few gates, without having to
actually calculate 2n−1 + 1 values of f (x) as in the classical case. Going back to our example
of n = 64, a classical computer could take it up to 300,000 years to find the answer, while a
quantum computer can find it in the time it takes to pass the qubits through the gates, which
shouldn’t be more than a few seconds!

This result is very impressive, but we should also mention that an algorithm for determining
whether a function is constant or balanced is not something you would ever realistically need.
This problem was specifically designed to show the potential benefits of quantum computers,
but it has no known applications.
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A more useful quantum algorithm, that you may have heard of, is Shor’s algorithm, which
is used to factorize integers, and can do so much faster than any known classical algorithm.
Factorizing integers is a very common problem, especially in cryptography. This algorithm is
a bit more complicated, so we will not discuss it here, but you should look up this and other
quantum algorithms if you’re interested.

Problem 5.9. You meet a layperson with no knowledge of the math of quantum mechanics.
They tell you about an amazing YouTube video with 100 million likes, where a famous YouTu-
ber with 10 million subscribers talked about quantum computers. According to the famous
YouTuber, who has a master’s degree in physics, quantum computers are so immensely
powerful because they can apply any calculation to all the possible inputs in parallel, while a
classical computer can only calculate them one at a time. Explain to the layperson, in simple
terms and without using any math, what the YouTuber got wrong. Identify the concepts on
which the YouTuber’s misconception is most likely based, and explain how the YouTuber
applied these concepts incorrectly. Then clarify how quantum computers really work.

Problem 5.10.

A. In Problem 5.5 you wrote a computer program which allows the user to pass qubits through
quantum gates and perform measurements. Your program should therefore be able to do
anything a quantum computer can. Use it to perform the Deutsch-Jozsa algorithms.

B. You program is running on a classical computer, so obviously, it shouldn’t be able to
reproduce the speedup of a quantum computer. How can you reconcile this with the fact that
the program is able to perform the Deutsch-Jozsa algorithm? You should be able to answer
this part of the question even if you didn’t do Problem 5.5 or part A, but writing the program
should give you some insight into the answer.

6 Continuous Quantum Systems

Quantum mechanics is a confusing and unintuitive theory, and requires the introduction of
many new concepts. One of the main goals of this course is to introduce quantum mechanics
to students in a way that is mathematically as simple as possible, so that they won’t have to
struggle with complicated math on top of trying to understand new physical concepts.

It is quite remarkable that we have managed to describe all of the axioms of quantum
theory, and almost all of its important aspects such as superposition, entanglement, and
the uncertainty principle, using only linear algebra – without any calculus. Moreover, by
focusing on discrete two-state systems, or qubits, we actually managed to do everything
almost exclusively in C2, the simplest non-trivial complex vector space.

Unfortunately, in real life not all systems are discrete, and the time has finally come to
start introducing some calculus and talking about continuous quantum systems, which are
described by infinite-dimensional Hilbert spaces. However, the student may take comfort in
the fact that this is going to be merely a straightforward generalization of what we’ve already

127



learned. The only real difference is that now states are going to be functions instead of vectors,
and operators are going to be derivatives instead of matrices.

6.1 Mathematical Preliminaries

6.1.1 Exponentials and Logarithms

The exponential function is defined on arbitrary complex numbers z ∈ C using a power series as
follows:

ez ≡
∞

∑
n=0

zn

n!
= 1 + z +

1
2

z2 +
1
3!

z3 + · · · . (6.1)

The complex number z is called the exponent. If the exponent is zero, then all the terms in
the series vanish except the first one, and we get e0 = 1. If the exponent is a natural number
n ∈N, then (6.1) turns out to be the same as taking the real number50 e ≈ 2.718 to the power
of n, that is, multiplying it by itself n times. This can then be expanded to negative integers
using the formula

e−n ≡ 1
en , (6.2)

and to rational numbers using

a
b
∈ Q =⇒ ea/b ≡ b

√
ea. (6.3)

However, for arbitrary real or complex numbers, we generally use the power series definition
(6.1) directly, or an equivalent definition such as the ones you will prove in problems 6.2 and
6.3 below.

By taking the complex conjugate of the series (6.1), we get:

(ez)∗ = ez∗ , (6.4)

so the conjugate operation commutes with taking the exponential. In particular, given a
complex number in the polar representation (see Section 3.1.4), we have

z = r ei ϕ =⇒ z∗ = r e− i ϕ, r, ϕ ∈ R. (6.5)

This indeed makes sense, as taking the complex conjugate mean reflecting z across the real
line, and thus turns the angle ϕ, which is the angle with respect to the real line, into its
negative – see Figure 3.1.

One can also prove from the definition (6.1) that ez+w = ez ew, so

ei ϕe− i ϕ = ei ϕ−i ϕ = e0 = 1. (6.6)

50But of course, in order to know the value of the number e in the first place, we need to calculate the power
series (6.1) for z = 1!

128



Therefore the magnitude of z is

|z| =
√

zz∗ =
√

rei ϕ · re− i ϕ =
√

r2 = r, (6.7)

as expected.

The exponential function is its own derivative:

d
dz

ez = ez . (6.8)

In fact, it can be defined using this property, as you will prove in Problem 6.1. Using the chain
rule, we get the more general result

d
dz

eλz =
d
dz

(λz) eλz = λ eλz, (6.9)

where λ is any constant complex number (i.e. independent of z).

The inverse function of the exponential is the logarithm:

w = ez ⇐⇒ z = log w, elog z = log ez = z. (6.10)

This is also called the natural logarithm, since it is taken with respect to the “natural” base
e ≈ 2.718. More generally, a logarithm with respect to the base b satisfies

w = bz ⇐⇒ z = logb w, blogb z = logb bz = z. (6.11)

For a general base b we have
d
dz

bz = bz loge b, (6.12)

and the extra term vanishes when b = e, since loge e = 1. This explains why the base e ≈ 2.718
is “natural”; it is the unique base for which the function bz is its own derivative, without the
extra term. Sometimes the notation ln is also used for the natural logarithm: ln ≡ loge. Since
b = eln b, the power series definition (6.1) can be used to define the exponential of any base b
with respect to arbitrary complex numbers z using the formula

bz =
(

eln b
)z

= ez ln b . (6.13)

Problem 6.1. By assuming a generic power series expansion

f (z) =
∞

∑
n=0

anzn, (6.14)

prove that if f (z) is its own derivative, then it must be the exponential function, i.e. an = 1/n!.
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Problem 6.2. The power series expansions of the trigonometric functions cos x and sin x are

cos x ≡
∞

∑
n=0

(−1)n

(2n)!
x2n = 1− 1

2
x2 +

1
4!

x4 + · · · , (6.15)

sin x ≡
∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1 = x− 1

3!
x3 +

1
5!

x5 + · · · . (6.16)

Use them to prove Euler’s formula

ei x = cos x + i sin x. (6.17)

As a corollary, show that

cos x = Re
(
ei x) = ei x + e− i x

2
, (6.18)

sin x = Im
(
ei x) = ei x− e− i x

2 i
. (6.19)

Problem 6.3. The binomial theorem states that for x, y ∈ C and n ∈N:

(x + y)n =
n

∑
k=0

(
n
k

)
xn−kyk, (6.20)

where the binomial coefficients are defined as(
n
k

)
≡ n!

k! (n− k)!
. (6.21)

So, explicitly, we have

(x + y)n = xn + nxn−1y +
1
2

n (n− 1) xn−2y2 + · · · . (6.22)

Using the binomial theorem and the power series definition of the exponential (6.1), prove
the equivalent definition

ez = lim
n→∞

(
1 +

z
n

)n
. (6.23)

6.1.2 Matrix and Operator Exponentials

To generalize the exponential to complex matrices A, we define the matrix exponential:

eA ≡
∞

∑
n=0

An

n!
= 1 + A +

1
2

A2 +
1
3!

A3 + · · · , (6.24)

where 1 is now the identity matrix, and An means the product of the matrix A with itself n
times. Note that it satisfies

e0 = 1, (6.25)
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that is, the exponential of the zero matrix is the identity matrix, in analogy with the fact that
the exponential of zero is one. It also satisfies, as you will prove in Problem 6.4,(

eA
)†

= eA†
, (6.26)

in analogy with (6.4).

Things start to become more complicated when we consider the product of two exponentials,
eA eB. For numbers (which can be considered 1× 1 matrices) we have ez ew = ez+w, but to
prove that, we used the fact that numbers commute. For arbitrary n× n matrices A and B,
it is in general not true that eA eB = eA+B. However, in Problem 6.5 you will prove that this
identity is true if [A, B] = 0, that is, if A and B commute.

The matrix logarithm is the inverse function of the matrix exponential:

B = eA ⇐⇒ A = log B, elog A = log eA = A. (6.27)

This is analogous to (6.10). However, although every complex number has a logarithm51, a
matrix has a logarithm if and only if it is invertible. One of the directions of this proof is easy:
if a matrix B has a logarithm A = log B, then we can write B = eA, and then the inverse will
be B−1 = e−A. We won’t prove the other direction here.

Recall that we said that Hermitian matrices are analogous to real numbers, and unitary
matrices are analogous to complex numbers with unit norm. Since for real ϕ we have∣∣ei ϕ

∣∣ = 1, we should expect that the exponential of i times a Hermitian matrix will be a
unitary matrix. Let H be a Hermitian matrix and let t ∈ R be a real number, and let us
define52

U ≡ e− i Ht . (6.29)

To prove that U is unitary, let us take its adjoint:

U† =
(

e− i Ht
)†

= e− i∗ H†t∗ = ei Ht, (6.30)

since H† = H due to H being Hermitian, t∗ = t due to t being real, and i∗ = − i. Thus:

UU† = e− i Ht ei Ht = e0 = 1, (6.31)

so e− i Ht is indeed unitary. Note that here we used the fact that H commutes with itself, and

51In fact, every complex number has an infinite number of logarithms. The arbitrary complex number z = r ei ϕ

can also be written as z = r ei(ϕ+2πn) for all integer n, since adding a multiple of 2π to the angle ϕ results in the
same angle. Thus we have

log z = log
(

r ei(ϕ+2πn)
)
= log r + log ei(ϕ+2πn) = log r + i (ϕ + 2πn) , (6.28)

where n can be any integer. Here we used the identity log (ab) = log a + log b, which follows from the identity
ez ew = ez+w.

52The minus sign here is a convention; the inverse matrix, ei Ht, is of course unitary as well.
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therefore the product of the exponentials is the exponential of the sum, as we discussed above.
In fact, since all unitary matrices are invertible, and all invertible matrices have a logarithm,
any unitary matrix U can be written as e− i H for some Hermitian matrix H, where

H = i log U =⇒ U = e− i H . (6.32)

Finally, (6.9) generalizes to matrices as well:

d
dt

eAt = A eAt, (6.33)

where A is any constant complex matrix (i.e. independent of t).

Everything we described here was defined for matrices; however, it actually also applies
to general operators on any Hilbert space – and in the infinite-dimensional case it is less
convenient to think about operators as matrices, since those matrices would be infinite-
dimensional as well. The operator exponential is defined is exactly the same way as the matrix
exponential, with the identity matrix replaced by the identity operator (which does not change
the state it acts on), the power An means the operator A is applied n times, and so on.

Problem 6.4. Prove that
(
eA)†

= eA†
.

Problem 6.5. Prove that if two matrices A and B commute, that is, [A, B] = 0, then

eA eB = eA+B . (6.34)

One way to do this is using the power series definition (6.24).

Problem 6.6.

A. Prove that the exponential of a diagonal matrix with diagonal elements λi is a diagonal
matrix with diagonal elements eλi :

exp

 λ1 0 0

0
. . .

0 0 λn

 =

 eλ1 0 0

0
. . .

0 0 eλn

 . (6.35)

B. Prove that if B is an invertible matrix, then for any matrix A :

eBAB−1
= B eA B−1. (6.36)

C. Using (A) and (B), prove that if A is diagonalizable, that is, A = PDP−1 for some matrix P
and a diagonal matrix D (recall Section 3.2.16), then

eA = P eD P−1. (6.37)

This gives us a straightforward way to calculate the exponential of any diagonalizable matrix
(and in particular every normal matrix, since they are always diagonalizable).
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Problem 6.7. Find the matrix exponential e− i θσy where σy is the Pauli matrix

σy ≡
(

0 − i
i 0

)
. (6.38)

Does the result look familiar?

6.2 Continuous Time Evolution, Hamiltonians, and the Schrödinger Equation

When we described the Evolution Axiom, we only talked about evolution from one discrete
point in time to another. As a first step towards quantum mechanics of continuous systems,
let us discuss time evolution with a continuous time variable.

6.2.1 The Schrödinger Equation and Hamiltonians: Preface

Usually, in introductory quantum mechanics courses, the Schrödinger equation is introduced
at the very beginning – as a fundamental postulate, without any explanation or motivation.
The student is simply told that this is the equation they are going to be working with, and
typically, much of the rest of the course consists of solving the Schrödinger equation for
different systems.

In this course, I chose to do the exact opposite, and introduce the Schrödinger equation only
at the very end of the course. The reason is that the Schrödinger equation is actually not
a fundamental component of the modern 21st-century formulation of quantum theory53.
What is truly fundamental about quantum theory is what we spent the majority of this
course studying: the abstract formulation of the theory in terms of Hilbert spaces, states, and
operators, using the axioms we have presented above. The Schrödinger equation turns out
to be merely a special case of the Evolution Axiom – which, as you recall, simply says that
quantum states evolve by the action of unitary operators.

The Evolution Axiom applies to any kind of evolution, whether in time or due to some
transformation performed on the system; and with regards to evolution in time, the time
variable can be either discrete or continuous. Quantum gates, which are the main type of
evolution we have seen so far, correspond to discrete time evolution – the qubit is in some
state now, and will be in another state after it passes through the gate, but these are two
discrete points in time, and nothing of interest is happening in the gap between them.

In the specific case when the evolution is the system’s natural evolution in time (so not
a result of some explicit transformation, like a rotation) and with respect to a continuous
time variable, it is useful in practice to replace the Evolution Axiom, which is very abstract,
with the Schrödinger equation, which is a concrete differential equation that can be solved,
either exactly or approximately, for a variety of different systems. The focus then shifts from

53In fact, entire books have been written about fields such as quantum computation and quantum gravity
without mentioning the Schrödinger equation even once!

133



the unitary evolution operator of the Evolution Axiom to a Hermitian operator called the
Hamiltonian. We will see below precisely how these two operators are related to each other.

To further illustrate the fact that the Evolution Axiom is more fundamental than the Schrödinger
equation, consider the fact that the Evolution Axiom is an almost inevitable result of the
mathematical framework of quantum theory – indeed, if quantum states evolved with non-
unitary operators, then probabilities would no longer sum to 1, and the theory wouldn’t make
any sense. While the Schrödinger equation also preserves probabilities (as it must), this fact is
not immediately obvious from the form of the equation.

6.2.2 Derivation of the Schrödinger Equation

Let us recall the Evolution Axiom from Section 4.5.1, with slightly different notation. If the
system is in the state |Ψ (t1)⟩ at time t1, and in another state |Ψ (t2)⟩ at time t2, then the two
states must be related by the action of some unitary operator U (t2 ← t1):

|Ψ (t2)⟩ = U (t2 ← t1) |Ψ (t1)⟩ . (6.39)

The main difference between this formulation and the one we had for discrete systems is
that now we are letting U be a continuous function of t1 and t2, so that we can encode the
unitary evolution of the system from any point in time to any other point in time. This is very
different than what we discussed in the discrete case, where for example, a quantum gate is
not a function of time – it is the same quantum gate at all times.

However, this is still just a special case of the Evolution Axiom; the axiom simply states that
evolution between any two points in time must be encoded in some unitary operator, but
it will in general be a different operator for different start and end times, so here we have
explicitly encoding the different operators as one universal function U (t2 ← t1).

In (6.39), if we assume that t2 = t1 (that is, no time has passed) then we get

|Ψ (t1)⟩ = U (t1 ← t1) |Ψ (t1)⟩ . (6.40)

Since this must be true for every state |Ψ (t1)⟩ and for every time t1, we see54 that if no time
has passed, U (t1 ← t1) must be the identity operator:

U (t1 ← t1) = 1, ∀t1 ∈ R. (6.41)

Let us now assume that the system is in the state |Ψ (t3)⟩ at time t3. Then from (6.39) we must
have on the one hand

|Ψ (t3)⟩ = U (t3 ← t1) |Ψ (t1)⟩ , (6.42)

but on the other hand

|Ψ (t3)⟩ = U (t3 ← t2) |Ψ (t2)⟩ = U (t3 ← t2)U (t2 ← t1) |Ψ (t1)⟩ . (6.43)

54Recall Problem 3.29!
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Therefore, U must satisfy the composition property55:

U (t3 ← t1) = U (t3 ← t2)U (t2 ← t1) , ∀t1, t2, t3 ∈ R. (6.44)

In particular, if t3 = t1 we get

1 = U (t1 ← t1) = U (t1 ← t2)U (t2 ← t1) . (6.45)

Therefore we must have

U (t1 ← t2) = U−1 (t2 ← t1) = U† (t2 ← t1) , ∀t1, t2 ∈ R, (6.46)

or in other words, evolution to the past is given by the adjoint (or inverse) of the evolution to
the future, as we discussed in Section 4.5.1.

We now change notation slightly by taking t1 7→ t0 and t2 7→ t in (6.39):

|Ψ (t)⟩ = U (t← t0) |Ψ (t0)⟩ . (6.47)

For any arbitrary time t, the evolution of the system from a fixed time t0 is given by this
equation. Let us take the time derivative of the equation:

d
dt
|Ψ (t)⟩ = dU (t← t0)

dt
|Ψ (t0)⟩ , (6.48)

where we consider |Ψ (t0)⟩ to be independent of t since t0 is a fixed time. From (6.47) we find,
by multiplying both sides by U† (t← t0) from the left, that

|Ψ (t0)⟩ = U† (t← t0) |Ψ (t)⟩ . (6.49)

We plug that into (6.48) and find

d
dt
|Ψ (t)⟩ = dU (t← t0)

dt
U† (t← t0) |Ψ (t)⟩ , (6.50)

where the time derivative only acts on U and not on U†. Now, let us define a new operator H
called the Hamiltonian as follows:

H (t) ≡ i
dU (t← t0)

dt
U† (t← t0) . (6.51)

Note that H can in general be a function of t, but it is independent of t0, which is why we

55This property is the reason we used the notation U (t2 ← t1): we wanted the t2 in U (t2 ← t1) and
the t2 in U (t3 ← t2) to be adjacent. If the times were arranged from left to right, we would have had
U (t2 → t3)U (t1 → t2) which does not make it clear that the operator on the left starts when the operator
on the right ends. Note that when applying operators to a ket, the operators always act from right to left. So in
U (t3 ← t2)U (t2 ← t1) |Ψ (t1)⟩ the operator U (t2 ← t1) acts on the state first, to take it to t2, and then U (t3 ← t2)
acts on the result, to take it to t3.
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called it H (t) and not H (t, t0) or H (t← t0). Also, the Hamiltonian is Hermitian. You will
prove both of these facts in Problem 6.8.

In terms of the Hamiltonian, (6.50) becomes

i
d
dt
|Ψ (t)⟩ = H (t) |Ψ (t)⟩ . (6.52)

This equation is called the Schrödinger equation5657.

Problem 6.8.

A. Prove that H (t) as defined in (6.51) is independent of t0, thus justifying the notation H (t),
as well as its use in the Schrödinger equation (6.52), where t is the only variable.

B. Prove that H (t) is a Hermitian operator.

6.2.3 Time-Independent Hamiltonians

Let us now assume that the Hamiltonian is constant, that is, time-independent. Although in
some quantum systems the Hamiltonian does depend on time, this is not very common; most
quantum systems have time-independent Hamiltonians.

We can rewrite (6.51) as follows:

dU (t← t0)

dt
= − i HU (t← t0) . (6.54)

Compare this with (6.33):
d
dt

eAt = A eAt, (6.55)

which we derived assuming that A is constant. If the Hamiltonian H is constant, then
A ≡ − i H is also constant. In addition, we can replace t with t− t0 in the exponent, since that

56In non-natural units, this equation features the reduced Planck constant h̄:

i h̄
d
dt
|Ψ (t)⟩ = H (t) |Ψ (t)⟩ . (6.53)

Of course, as we discussed in Section 4.1.1, h̄ is dimensionful and therefore its numerical value doesn’t matter, so
we can just choose units such as the Planck units, where it simply has the value h̄ ≡ 1.

57In the Schrödinger equation, a time derivative d/dt is acting on the state |Ψ (t)⟩. Therefore, one might wonder
whether d/dt is an operator on the Hilbert space. However, the answer is no. This is because here we are dealing
with non-relativistic quantum mechanics, and non-relativistic theories – both classical and quantum – treat space
and time differently: while x is an operator (as we will see below), t is just a label. See also Footnote 66.

In this section we defined a function |Ψ(t)⟩, which takes some real number t as input, and returns some state in
the Hilbert space as output. The derivative d/dt doesn’t act on the vectors in the Hilbert space, which is what
operators do; instead, it acts on this function. Therefore, d/dt is not an operator on the Hilbert space.

To illustrate this further, consider a system with a finite Hilbert space, such as a qubit. We can define a function
|Ψ(t)⟩ which returns a particular state of the qubit given a particular point t in time. Then d/dt would be the
derivative of that function with respect to time. But as we have seen, operators on finite Hilbert spaces take the
form of matrices acting on vectors in the space. d/dt is not a matrix, so it is not an operator on the Hilbert space –
it’s just a derivative with respect to a label.
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does not change the derivative (because t0 is constant). Hence, we see that the solution58 to
the differential equation (6.54) is

U (t← t0) ≡ e− i H(t−t0) . (6.56)

In other words, if we take U (t← t0) ≡ e− i H(t−t0), then its time derivative will be− i HU (t← t0),
and thus it will satisfy (6.54). Don’t get confused by the notation: H (t− t0) in the exponent is
the constant H times the number t− t0, not the function H evaluated at t− t0!

The reason we wrote t− t0 instead of t in the exponential is that from (6.41) we have the initial
condition

U (t0 ← t0) = 1. (6.57)

This condition is indeed satisfied for U as defined in (6.56), since

U (t0 ← t0) = e− i H(t0−t0) = e0 = 1, (6.58)

by (6.25). However, it would not be satisfied if we just wrote e− i Ht, since then we would
have U (t0 ← t0) = e− i Ht0 ̸= 1. In general, when solving differential equations, the solution
always depends on the initial (or boundary) conditions.

We can rewrite (6.56) to match the notation in the beginning of Section 6.2.2 as follows:

U (t2 ← t1) ≡ e− i H(t2−t1) . (6.59)

The evolution operator between any two arbitrary points in time, t1 and t2, is given by (6.59).

It is interesting that, since H is constant, the unitary evolution operator is not a function of
both t1 and t2, but only the difference between them, t2 − t1. So for example, the evolution
from time t1 = 3 to time t2 = 4 and from time t1 = 4 to time t2 = 5 will be given by the same
unitary operator, e− i H, since in both cases the time difference is t2 − t1 = 1.

Problem 6.9. For the unitary operator defined in (6.59):

A. Verify that it satisfies the composition property (6.44).

B. Verify that it is invariant under the time shift transformation

t1 7→ t1 + t, t2 7→ t2 + t, (6.60)

where t ∈ R.

C. Verify that under a time-reversal transformation

t1 7→ −t1, t2 7→ −t2, (6.61)

the evolution operator is replaced with its adjoint (or inverse). Thus the evolution equation

58Even if the Hamiltonian is time-dependent, it is still possible to solve the differential equation (6.54); however,
the solution is then much more complicated and involves time-ordered exponentials, which we will not cover in this
course.
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(6.39) is invariant under time reversal if we also replace U by its adjoint. This is an explicit
example of the time-reversal symmetry of quantum mechanics, which we discussed in Section
4.5.1.

Problem 6.10. In Section 4.5.2 we discussed several unitary operators which act on qubits.
For example, the quantum Z gate is given by the Pauli matrix σz

Z ≡ σz =

(
1 0
0 −1

)
, (6.62)

and its action is to leave |0⟩ unchanged but flip the phase of |1⟩. Find the Hamiltonian
corresponding to this unitary evolution operator. Since this is a discrete evolution, the time
coordinate is discrete and not continuous, and we can take the time interval to be 1. In other
words, you need to find the H in the equation Z = e− i H.

6.2.4 Hamiltonians and Energy

In Problem 6.8, you proved that the Hamiltonian is a Hermitian operator. Therefore, it should
correspond to an observable. Indeed, it does; this observable is the energy of the system.
Its (real) eigenvalues Ei correspond to energy eigenstates |Ei⟩ which, as usual, make up an
orthonormal basis59:

H |Ei⟩ = Ei |Ei⟩ . (6.63)

This is often referred to as the time-independent Schrödinger equation, but it’s really just an
eigenvalue equation!

The basis eigenstate |Ei⟩ corresponds to a measurement of Ei for the energy. There will always
be a state of lowest energy, that is, a state |E0⟩ for which the eigenvalue E0 is the lowest among
all the eigenvalues:

E0 < Ei, ∀i > 0. (6.64)

Such a state is called the ground state.

As we have seen, the Hamiltonian is used to evolve continuous systems in time. What does
energy have to do with time, you ask? Well, from relativity we know that momentum in
spacetime is described by a 4-vector called the 4-momentum, which is defined as follows:

p (t, x, y, z) ≡


E
px

py

pz

 . (6.65)

Here, px, py, and pz are the momenta in the x, y, and z directions respectively. In the first
component, which is the one in the time direction, we have the energy E. Thus energy is

59Here we used slightly different notation than usual, with the basis eigenstates being |Ei⟩ instead of |Bi⟩ and
the eigenvalues being Ei instead of λi – compare (3.143).
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actually “momentum in the time direction”! Indeed, in relativity we will often write p0 for the
energy. Just like momentum moves you in space, so does energy move you in time. This is
exactly why the Hamiltonian is responsible for evolution in time. It is also why Hamiltonians
are usually time-independent – if they are not, then energy is not conserved!

6.3 Hamiltonian Mechanics and Canonical Quantization

We have seen that in order to create a model for a specific physical system in quantum theory,
we must choose a specific Hilbert space with specific states and specific operators. But how
do we know which Hilbert space, states, and operators to use for a given physical system?
This is often a hard question to answer. For example, we currently do not have a consistent
and experimentally verified quantum model for general relativity; the problem of finding
such a model is known as quantum gravity, and it is one of the hardest problems in physics.

Luckily, it turns out that there is a certain prescription that allows us to take a classical
theory and turn it into a quantum theory in a straightforward way. The properties of the
classical theory will dictate the type of Hilbert space, states, and operators we should use in
the corresponding quantum theory. This process is known as quantization. It doesn’t work
for every classical theory; for example, it doesn’t work for general relativity, which is why
quantizing gravity is so hard. However, it does work, in an experimentally verifiable way, for
most classical theories of interest.

6.3.1 A Quick Review of Classical Hamiltonian Mechanics

Classical mechanics can be reformulated using a quantity called the (classical) Hamiltonian.
This is basically the total energy of the system, usually written as kinetic energy plus potential
energy and in terms of the canonical coordinates q and p. Here we will consider the case where
q and p represent position and momentum respectively, and therefore we will label them x
and p instead.

The phase space of the system consists of all the possible values of the canonical coordinates;
for a particle, the phase space includes both “actual” space (all the values of x) and momentum
space (all the values of p).

Since we have limited time, and we are interested in quantum mechanics and not classical
mechanics, we will not go over the Hamiltonian formulation in detail. Instead, we will just
review certain important definitions and results.

The Hamiltonian is generally of the form

H = K (p) + V (x) , (6.66)

where K is the kinetic energy, which depends only on the momentum p, and V is the potential
energy, which depends only on the position x.
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Let us consider the specific case of a single particle of mass m. In Newtonian mechanics, the
particle’s momentum is defined as

p ≡ mv, where v ≡ ẋ ≡ dx
dt

. (6.67)

The kinetic energy is defined as 1
2 mv2, and we can write it in terms of the momentum as

follows:

K =
1
2

mv2 =
1

2m
(mv)2 =

p2

2m
. (6.68)

We conclude that for a particle of mass m, the Hamiltonian will generally be of the form

H =
p2

2m
+ V (x) . (6.69)

The kinetic energy of a particle will always be p2/2m, but the potential energy V (x) depends
on the forces acting on the particle, such as gravity or electromagnetism.

Now, let us define the Poisson brackets of two functions f , g of position x and momentum p as
follows:

{ f , g} ≡ ∂ f
∂x

∂g
∂p
− ∂g

∂x
∂ f
∂p

. (6.70)

In Problem 6.11 you will prove some properties of these brackets; in particular they are anti-
symmetric, {g, f } = −{ f , g} which means that { f , f } = 0 for any f . For x and p themselves
we have

{x, x} = {p, p} = 0, (6.71)

and
{x, p} = ∂x

∂x
∂p
∂p
− ∂p

∂x
∂x
∂p

= 1, (6.72)

since x and p are assumed to be independent variables, so their derivatives with respect to
each other vanish. Even though in Newtonian mechanics we define the momentum to be
p ≡ mẋ, in Hamiltonian mechanics we “forget” about this relation and just assume that x and
p are two completely independent degrees of freedom of the system, thus generalizing the
concept of momentum to any kind of system.

The dynamics of the system in Hamiltonian mechanics are determined as follows. If A is any
function of x and p, then its time derivative is given by60

Ȧ ≡ dA
dt

= {A, H} . (6.74)

60Here we are assuming that A does not depend on t explicitly, but only implicitly via its dependence on x
and p. If A does have explicit dependence on t, then this equation becomes

dA
dt

= {A, H}+ ∂A
∂t

. (6.73)
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For x and p themselves, we get

ẋ ≡ dx
dt

= {x, H} = ∂x
∂x

∂H
∂p
− ∂H

∂x
∂x
∂p

=
∂H
∂p

, (6.75)

ṗ ≡ dp
dt

= {p, H} = ∂p
∂x

∂H
∂p
− ∂H

∂x
∂p
∂p

= −∂H
∂x

. (6.76)

In other words, the evolution of each parameter depends on the derivative of the Hamiltonian
with respect to the other parameter. Equations (6.75) and (6.76) are called Hamilton’s equations.

For a point particle with Hamiltonian (6.69), we get

ẋ ≡ dx
dt

=
∂

∂p

(
p2

2m
+ V (x)

)
=

p
m

, (6.77)

ṗ ≡ dp
dt

= − ∂

∂x

(
p2

2m
+ V (x)

)
= −V ′ (x) . (6.78)

The first equation relates the two independent variables x and p to each other: p = mẋ. Of
course, this is just the definition of the momentum of a particle in Newtonian mechanics, but
Hamiltonian mechanics allows us to consider more general systems and define a generalized
momentum for any kind of system. For example, in a rotating system p will be the angular
momentum, and so on.

The second equation is Newton’s second law: the time derivative of momentum is the force,
and the force is given by minus the derivative of the potential61. We can take the derivative of
(6.77) and plug (6.78) into it to get

ẍ ≡ d2x
dt2 =

dẋ
dt

=
1
m

dp
dt

= − 1
m

V ′ (x) . (6.80)

Multiplying by m, we get the familiar form of Newton’s law:

F = ma = mẍ ≡ m
d2x
dt2 = −V ′ (x) , (6.81)

where a is the acceleration.

Problem 6.11. Prove the following properties of the Poisson brackets:

• Anti-symmetry: For all functions f , g

{ f , g} = −{g, f } . (6.82)
61Here we are working in one spatial dimension, for simplicity. In the 3-dimensional case, the force is minus the

gradient of the potential:

F = −∇V = −
(

∂V
∂x

,
∂V
∂y

,
∂V
∂z

)
. (6.79)
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• Linearity: For all functions f , g, h and numbers α, b

{α f + βg, h} = α { f , h}+ β {g, h} . (6.83)

• Leibniz rule: For all functions f , g, h

{ f g, h} = f {g, h}+ { f , h} g. (6.84)

• Jacobi identity:
{ f , {g, h}}+ {g, {h, f }}+ {h, { f , g}} = 0. (6.85)

6.3.2 Canonical Quantization

Recall the definition of the expectation value for the measurement of an observable A when
the system is in the state |Ψ⟩:

⟨A⟩ ≡ ⟨Ψ|A|Ψ⟩. (6.86)

Let us take the time derivative of this, assuming that the state |Ψ⟩ depends on time but the
observable A doesn’t (which is usually the case):

d ⟨A⟩
dt

=

(
d
dt
⟨Ψ|
)

A|Ψ⟩+ ⟨Ψ|A
(

d
dt
|Ψ⟩
)

. (6.87)

By the Schrödinger equation (6.52), we have

d
dt
|Ψ⟩ = − i H |Ψ⟩ . (6.88)

We can take the adjoint of this equation to get (remember that H is Hermitian so H = H†)

d
dt
⟨Ψ| = i ⟨Ψ|H. (6.89)

Plugging into (6.87), we get

d ⟨A⟩
dt

= i⟨Ψ|HA|Ψ⟩ − i⟨Ψ|AH|Ψ⟩

= − i⟨Ψ| (AH − HA) |Ψ⟩
= − i⟨Ψ| [A, H] |Ψ⟩
= − i ⟨[A, H]⟩ ,

so in conclusion,
d ⟨A⟩

dt
= − i ⟨[A, H]⟩ . (6.90)
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Comparing this with (6.74),
dA
dt

= {A, H} , (6.91)

we find a very interesting result: the quantum expectation value of the observable A evolves
in time just as classical Hamiltonian mechanics predicts, provided we relate the Poisson
brackets of functions and the commutator of operators as follows:

[A, H] ≡ i {A, H} , (6.92)

or more generally for any two observables A and B,

[A, B] ≡ i {A, B} . (6.93)

This is called the canonical commutation relation.

Equation (6.93) makes sense, because in Problem 6.11 you proved some properties of Poisson
brackets, and these properties also happen to be satisfied by the commutator, as you proved
in problems 4.29, 4.30, 4.32, and 4.33!

In particular, for x and p themselves, according to (6.72) we have {x, p} = 1, so in the quantum
theory we will have62

[x, p] = i . (6.94)

What we have derived (or at least, motivated) here is called canonical quantization. Given a
classical system described by a Hamiltonian, we can turn it into a quantum system – quantize
it – by “promoting” classical functions on the phase space, including the variables x and p
themselves, to Hermitian operators. We are not provided with any specific information about
these operators, except that they are Hermitian (which they must be, since in classical physics
all variables are real!) and that the quantum commutators should be related to the classical
Poisson brackets according to the prescription (6.93).

These Hermitian operators now represent observables in the quantum theory; they have
eigenstates and eigenvalues which represent possible measurement outcomes. This means
that the values of x and p are no longer uniquely determined from some initial conditions, as
in the classical theory; they become probabilistic. In addition, the time evolution of the system
is no longer described by Hamilton’s equations, but rather, by the Schrödinger equation.

Note that what we did here does not constitute a proof that all classical theories are related to
quantum theories in this way. Canonical quantization merely ensures that expectation values
of the observables in the quantum theory evolve in time in the same way as the observables
in the classical theory, which is something that we expect to be true, but it is not by itself a
sufficient condition for creating a sensible quantum theory. Indeed, there are known cases
where canonical quantization doesn’t quite work, or is at least ambiguous, because two
Poisson brackets which in the classical theory are equal to each other will have different
values in the quantum theory, generating an inconsistency.

62With h̄, this equation will take the form [x, p] = i h̄.
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Nevertheless, canonical quantization works incredibly well in the vast majority of cases – and
indeed, most classical theories, from a single point particle to very complicated systems with
many different particles and forces, can be quantized in this way, and the results have been
verified experimentally to high precision!

Just as in the case of the Schrödinger equation, in introductory quantum mechanics courses
canonical quantization is usually just presented as an arbitrary axiom. I hope I managed to
motivate it and give you some intuition as to why classical and quantum theories are related
in this way.

6.4 The Harmonic Oscillator

6.4.1 The Classical Harmonic Oscillator

The quantum harmonic oscillator is the quantization of the classical harmonic oscillator, and just
like the qubit, it is a reasonably simple quantum system which turns out to describe many
different realistic physical systems, either exactly or approximately. This makes sense, because
the classical harmonic oscillator itself describes or approximates many different classical
systems!

In particular, quantum harmonic oscillators form the basis of quantum field theory, which is
the theory describing all of the known elementary particles, including matter particles (such
as electrons and quarks), particles which mediate fundamental interactions (such as photons,
which mediate the electromagnetic force, and gluons, which mediate the strong nuclear force),
and others (such as the Higgs boson).

The (simple) classical harmonic oscillator has the Hamiltonian

H =
p2

2m
+

1
2

mω2x2. (6.95)

We have the standard kinetic energy term K (p) = p2/2m, where m is the mass of the particle,
and the potential energy

V (x) ≡ 1
2

mω2x2, (6.96)

where ω is a numerical constant called the frequency or angular frequency, because it represents
the frequency in which the oscillator oscillates.

It is easy to find the equations of motion using Hamilton’s equations (6.75) and (6.76). Alterna-
tively, since this is a particle with a Hamiltonian of the standard form (6.69), we can just use
Newton’s second law (6.81) directly:

d2x
dt2 = − 1

m
∂

∂x
V (x) = − 1

m
∂

∂x

(
1
2

mω2x2
)
= −ω2x. (6.97)
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To solve this differential equation, we can use the fact that

d
dt

cos t = − sin t,
d
dt

sin t = cos t, (6.98)

which means that
d2

dt2 cos t = − d
dt

sin t = − cos t. (6.99)

If we replace t by ωt + ϕ, where both ω and ϕ are constant (independent of t), then since

d
dt

(ωt + ϕ) = ω, (6.100)

we get, by the chain rule, that each derivative generates a factor of ω, so

d2

dt2 cos (ωt + ϕ) = −ω
d
dt

(
sin (ωt + ϕ)

)
= −ω2 cos (ωt + ϕ) . (6.101)

Therefore, this differential equation has the solution:

x (t) = A cos (ωt + ϕ) , (6.102)

where the integration constants A and ϕ are real numbers determined by the initial conditions.
Now we see why this is called a harmonic oscillator: the position of the particle oscillates
repeatedly between +A and −A over time.

Problem 6.12. Prove that the most general solution for the classical harmonic oscillator can
also be written as

x (t) = B cos (ωt) + C sin (ωt) , (6.103)

where B and C are integration constants, or as

x (t) = D ei ωt +E e− i ωt, (6.104)

where D and E are integration constants. All of these solutions are equivalent; find the
relationships between the integration constants {A, ϕ}, {B, C}, and {D, E} – that is, write
each pair in terms of another pair.

Problem 6.13. As an example of solving the equation of motion for specific initial conditions,
if the particle starts at time t = 0 at position x (0) = 1 with velocity ẋ (0) = 0, then we have

ẋ (0) = −ωA sin ϕ = 0 =⇒ ϕ = 0, (6.105)

x (0) = A = 1 =⇒ A = 0, (6.106)

and thus the solution is
x (t) = cos (ωt) . (6.107)

Similarly, find a solution for the classical harmonic oscillator with the initial conditions
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x (0) = 0 and ẋ (0) = ω.

Problem 6.14. By plugging the general solution (6.102) into the Hamiltonian (6.95), show that
the total energy of the system is

H =
1
2

mω2A2. (6.108)

Thus the Hamiltonian is time-independent, and energy is conserved.

6.4.2 Quantizing the Harmonic Oscillator

Let us now quantize the simple harmonic oscillator by promoting x and p to operators. We
are interested in finding the energy eigenstates of this quantum system. Instead of finding
them by solving a differential equation, we will use an easier and more intuitive method. We
define the ladder operators:

a =

√
mω

2

(
x +

i
mω

p
)

, a† =

√
mω

2

(
x− i

mω
p
)

, (6.109)

where a† is called the creation operator and a is called the annihilation operator. Notice that a† is
indeed the adjoint of a, since the numbers m, ω are real and the operators x, p are Hermitian.
These definitions may be inverted to get the position and momentum operators in terms of
the ladder operators:

x =

√
1

2mω

(
a† + a

)
, p = i

√
mω

2

(
a† − a

)
. (6.110)

Now, notice that

ωa†a = ω

√
mω

2

(
x− i

mω
p
)
·
√

mω

2

(
x +

i
mω

p
)

=
1
2

mω2
(

x− i
mω

p
)(

x +
i

mω
p
)

=
1
2

mω2

(
x2 +

i
mω

xp− i
mω

px−
(

i
mω

p
)2
)

=
1
2

mω2
(

p2

m2ω2 + x2 +
i

mω
[x, p]

)
=

p2

2m
+

1
2

mω2x2 +
1
2

i ω [x, p] .

Recall that in the classical theory we have {x, p} = 1, so in the quantum theory we have
[x, p] = i. Therefore:

ωa†a =
p2

2m
+

1
2

mω2x2 − 1
2

ω. (6.111)
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Comparing this to the Hamiltonian operator (6.95):

H =
p2

2m
+

1
2

mω2x2, (6.112)

we see that we can write

H = ω

(
a†a +

1
2

)
. (6.113)

Finally, we define a new operator called the number operator:

N ≡ a†a. (6.114)

Now the Hamiltonian may be written as

H = ω

(
N +

1
2

)
. (6.115)

The Hamiltonian has been simplified considerably! Since both ω and 1/2 are just numbers,
the problem of finding the eigenvalues and eigenstates of H now reduces to finding the
eigenvalues and eigenstates of N.

Problem 6.15.

A. Show that N is Hermitian.

B. Show that if |n⟩ is an eigenstate of N with the eigenvalue n, that is,

N |n⟩ = n |n⟩ , (6.116)

then |n⟩ is also an eigenstate of H with the eigenvalue ω
(
n + 1

2

)
.

C. Calculate, using the canonical commutation relation [x, p] = i, the following commutators:

[a, a†] = 1, [N, a†] = a†, [N, a] = −a. (6.117)

6.4.3 The Energy Eigenstates of the Harmonic Oscillator

Let |n⟩ be an eigenstate of N with eigenvalue n:

N |n⟩ = n |n⟩ . (6.118)

Since N is Hermitian, we know that n must be a real number. Let us calculate the expectation
value of the observable N with respect to the eigenstate |n⟩:

⟨N⟩n = ⟨n|N|n⟩ = ⟨n|a†a|n⟩ = ∥an∥2 , (6.119)

where we used the fact that ⟨n| a† is the bra of a |n⟩. On the other hand, we have

⟨N⟩n = ⟨n|N|n⟩ = n⟨n|n⟩ = n, (6.120)
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where we used (6.118) and the fact that the state |n⟩ is normalized to 1. By comparing the two
equations, we see that

n = ∥an∥2 ≥ 0, (6.121)

that is, n is not only real but also non-negative.

Next, we act with Na and Na† on |n⟩. In Problem 6.15 you showed that

Na− aN = [N, a] = −a, (6.122)

Na† − a†N = [N, a†] = a†, (6.123)

so we have

Na = aN − a = a (N − 1) , Na† = a†N + a† = a† (N + 1) , (6.124)

and thus
Na |n⟩ = a (N − 1) |n⟩ = (n− 1) a |n⟩ , (6.125)

Na† |n⟩ = a† (N + 1) |n⟩ = (n + 1) a† |n⟩ , (6.126)

where we used (6.118) and the fact that since n± 1 is a number, it commutes with operators
and can be moved to the left. Writing this result in a different way, we see that

N
(

a |n⟩
)
= (n− 1)

(
a |n⟩

)
, (6.127)

N
(

a† |n⟩
)
= (n + 1)

(
a† |n⟩

)
, (6.128)

or in other words, a |n⟩ is an eigenstate of N with eigenvalue n− 1, and a† |n⟩ is an eigenstate
of N with eigenvalue n + 1. However, by definition, the normalized eigenstates of N with
eigenvalues n− 1 and n + 1 are |n− 1⟩ and |n + 1⟩ respectively. Thus, we conclude that a |n⟩
is proportional to |n− 1⟩ and a† |n⟩ is proportional to |n + 1⟩. The proportionality factors
must be chosen so that the states are normalized. Let us therefore calculate the norms. The
norm ∥an∥2 was already calculated above:

∥an∥2 = ⟨n|a†a|n⟩ = ⟨n|N|n⟩ = n. (6.129)

To calculate ∥a†n∥2, we recall from Problem 6.15 that

aa† − a†a = [a, a†] = 1, (6.130)

and thus
aa† = a†a + 1 = N + 1. (6.131)

We therefore get

∥a†n∥2 = ⟨n|aa†|n⟩ = ⟨n| (N + 1) |n⟩ = ⟨n|N|n⟩+ ⟨n|n⟩ = n + 1. (6.132)
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To summarize, the norms are

∥an∥ =
√

n, ∥a†n∥ =
√

n + 1. (6.133)

The normalized eigenstates are now obtained, as usual, by dividing by the norm:

|n− 1⟩ = 1√
n

a |n⟩ , |n + 1⟩ = 1√
n + 1

a† |n⟩ . (6.134)

Another way to write this, from a different point of view, is as the action of the operators a
and a† on the state |n⟩:

a |n⟩ =
√

n |n− 1⟩ , a† |n⟩ =
√

n + 1 |n + 1⟩ . (6.135)

We see that a reduces the energy eigenvalue by 1, while a† increases the energy eigenvalue
by 1. In other words, a† gets us to the state of next higher energy (it “creates one quantum
of energy”) while a gets us to the state of next lower energy (it “annihilates one quantum of
energy”). This is the reason we called a† the creation operator and a the annihilation operator.
We call them the ladder operators because they let us “climb the ladder” of energy eigenstates.

Going back to the definition of the Hamiltonian in terms of the number operator, we see that

H |n⟩ = ω

(
n +

1
2

)
|n⟩ , (6.136)

and thus, as you proved in Problem 6.15, |n⟩ is an energy eigenstate with eigenvalue

En ≡ ω

(
n +

1
2

)
. (6.137)

In particular, since we showed above that n must be non-negative, and since we now also
see that it has to be an integer (as it can only be increased or decreased by 1!), the possible
eigenstates are found to be

|0⟩ , |1⟩ , |2⟩ , |3⟩ , . . . . (6.138)

We found that the energy of the quantum harmonic oscillator is discrete, or quantized, and the
system can only have energy which differs from ω/2 by equal steps of ω. The state of lowest
energy, also called the ground state, is |0⟩. It has the energy eigenvalue

E0 =
1
2

ω. (6.139)

If we act on the ground state with the annihilation operator, we get

a |0⟩ = 0, (6.140)

which is not a state, because it has norm 0 and cannot be normalized. This means that we
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cannot generate states with energy lower than that of the ground state. If we act on |0⟩ with
the creation operator, we get

a† |0⟩ = |1⟩ . (6.141)

We say that a†, which takes us from |0⟩ to |1⟩, excites the harmonic oscillator from the ground
state to the first excited state, which has exactly one “quantum” of energy. The state |n⟩ has
exactly n quanta, while the ground state |0⟩ has no quanta.

As we mentioned above, the quantum harmonic oscillator may be used to describe many
different physical systems. In quantum field theory, the operator N corresponds to the number
of particles excited from the field. So |0⟩ is the vacuum state, or a state with no particles63; |1⟩
is a state where one particle has been excited from the field (e.g. one photon has been excited
from the electromagnetic field); |2⟩ is a state with two particles; and so on.

Problem 6.16. Prove that

|n⟩ =
(
a†)n

√
n!
|0⟩ . (6.142)

This means that, once we know the ground state, we can create any energy eigenstate by
simply applying n times the operator a† and normalizing.

Problem 6.17.

A. Find ⟨V⟩ for the harmonic oscillator given that the system is in the energy eigenstate |n⟩.
B. How is the expectation value of the potential energy related to the total energy?

C. What is the expectation value of the kinetic energy?

6.5 Wavefunctions, Position, and Momentum

6.5.1 The Position Operator

When canonically quantizing a particle, the position function x is promoted to a Hermitian
position operator. We usually denote this operator with a hat, x̂, to distinguish it from its
eigenvalues, which are confusingly also written as x. Even more confusingly, we denote the
position eigenstate corresponding to a measurement of position x as |x⟩:

x̂ |x⟩ = x |x⟩ , x ∈ R. (6.143)

As usual, since x̂ is a Hermitian operator, its eigenstates |x⟩ form an orthonormal basis64.
Recall that for an orthonormal basis |Bi⟩, i ∈ {1, . . . , n} in a finite-dimensional Hilbert space,

63Notice that the vacuum state, despite having no particles, still has non-zero energy ω/2! This is called
zero-point energy, and it is simply the energy of the field itself.

64Our Hilbert space is now infinite-dimensional, and a rigorous discussion of such a space requires dealing
with many mathematical subtleties, but we will mostly ignore them in this course due to lack of time.

150



the orthonormality condition is given by (3.53):

⟨Bi|Bj⟩ = δij =

{
0 if i ̸= j,

1 if i = j.
(6.144)

The Kronecker delta δij has the property that, when evaluated inside a sum over an index i, it
“chooses” the term in the sum with index j:

n

∑
i=1

fiδij = f j, (6.145)

where fi represents the terms to be summed upon. You don’t actually need to evaluate the
sum, since all of the terms with i ̸= j vanish, and you are left with just one term, the one with
i = j.

The infinite-dimensional version of this is that for two basis states |x⟩ and |x′⟩, where x, x′ ∈ R,
we have

⟨x|x′⟩ = δ
(
x− x′

)
, (6.146)

where δ (x− x′) is the Dirac delta function. This function is zero everywhere except when
x = x′, in which case it is divergent. More precisely, the Dirac delta isn’t actually a function, it
is a distribution, which basically means it is only well-defined when used inside an integral.
For any function f , the Dirac delta satisfies the condition∫ +∞

−∞
f (x) δ

(
x− x′

)
dx = f

(
x′
)

. (6.147)

In other words, when evaluated inside an integral over a variable x, the delta function
δ (x− x′) simply “chooses” the value of the integrand for which x = x′. This is simply a
generalization the property of the Kronecker delta in (6.145). You don’t need to evaluate the
integral, since all of the terms with x ̸= x′ vanish, and you are left with just one term, the one
with x = x′.

Problem 6.18. Prove the following properties of the Dirac delta function:

A. ∫ +∞

−∞
f (x) δ (x)dx = f (0) . (6.148)

B. ∫ +∞

−∞
δ (x)dx = 1. (6.149)

C.
δ (x) = δ (−x) . (6.150)

D.
δ (λx) =

1
|λ|δ (x) , λ ∈ R. (6.151)
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Problem 6.19. Let us define the Heaviside step function:

Θ (x) ≡


0 x < 0,
1
2 x = 0,

1 x > 0.

(6.152)

Prove that
d

dx
Θ (x) = δ (x) , (6.153)

where δ (x) is the Dirac delta function.

6.5.2 Wavefunctions in the Position Basis

Since |x⟩ is an orthonormal eigenbasis, we should be able to write down any state |Ψ⟩ as
a linear combination – or superposition – of the basis eigenstates. Let us recall that in the
finite-dimensional case, with a finite basis |Bi⟩, we have

|Ψ⟩ =
n

∑
i=1
|Bi⟩⟨Bi|Ψ⟩. (6.154)

In Section 3.2.7 we said that ⟨Bi|Ψ⟩ – the probability amplitudes – are the coordinates of the
representation of the vector |Ψ⟩ with respect to the basis |Bi⟩, and they can be collected into
an n-dimensional vector:

|Ψ⟩
∣∣∣∣∣

B

≡

 ⟨B1|Ψ⟩
...

⟨Bn|Ψ⟩

 . (6.155)

In the infinite-dimensional case, we simply replace the sum with an integral (and optionally
add time dependence, since we now have a continuous time coordinate):

|Ψ (t)⟩ =
∫ +∞

−∞
|x⟩ ⟨x |Ψ (t)⟩dx. (6.156)

In this case, ⟨x|Ψ (t)⟩ are the coordinates of the representation of the vector |Ψ (t)⟩ with respect
to the basis |x⟩. Since there is one coordinate for each real number x, we cannot collect them
into a vector; instead, we define a function:

ψ (t, x) ≡ ⟨x |Ψ (t)⟩ . (6.157)

The complex-valued function ψ (t, x), which returns the probability amplitude to measure the
particle at position x at time t, is called the wavefunction.

Given a wavefunction ψ (t, x), the probability density to find the particle at position x at time t
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is given by the magnitude squared of the probability amplitude:

|ψ (t, x)|2 = |⟨x |Ψ (t)⟩|2 . (6.158)

The reason this is a probability density, and not a probability, is that continuous probability
distributions behave a bit differently than discrete ones. The probability to find the particle
somewhere in the real interval [a, b] ⊂ R at time t is given by the integral

∫ b

a
|ψ (t, x)|2 dx. (6.159)

If a = b, then the integral evaluates to zero. This means that the probability to find a particle
at any one specific point x is actually zero! A set containing just one point, or even a countable
number of discrete points, is a set of Lebesgue measure zero, which means it has no length. It
only makes sense to talk about finding a particle inside an interval such as [a, b] with a ̸= b,
which has non-zero Lebesgue measure and thus non-zero length.

Also, instead of the probabilities summing to 1, we must demand that the integral of the
probability densities over the entire real line evaluates to 1:∫ +∞

−∞
|ψ (t, x)|2 dx = 1. (6.160)

This makes sense, because there is 100% probability to find the particle somewhere on the
real line, that is, inside the interval (−∞,+∞).

Using the wavefunction ψ (t, x) = ⟨x |Ψ (t)⟩, we can rewrite (6.156) as follows:

|Ψ (t)⟩ =
∫ +∞

−∞
ψ (t, x) |x⟩dx. (6.161)

If we are given a state |Ψ (t)⟩, we can use (6.157) to convert it to a wavefunction, and con-
versely, if we are given a wavefunction ψ (t, x), we can use (6.161) to convert it to a state. This
is, of course, a consequence of the wavefunction being a representation of the state in a specific
basis. For this reason, you will sometimes hear the term “wavefunction” used as a synonym
for “state”; for systems where a wavefunction description exists, such as a quantized particle,
these two descriptions are equivalent.

However, it should be noted that wavefunctions are not fundamental entities in modern
quantum theory. The fundamental entities are the states, since any quantum system has states,
but only some systems have wavefunctions. For example, there is no wavefunction for a
qubit, since there are no continuous variables with respect to which the wavefunction can
be defined65. Even for systems that do have wavefunctions, the description using states is
more general, since a state is independent of a basis, while a wavefunction is only defined in
a particular basis.

65This is why, in the discussion of the Measurement Axiom, I used the term “collapse” rather than the more
popular “wavefunction collapse”. Qubits also collapse, but they do not have wavefunctions!
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Next, recall the completeness relation (3.81):

n

∑
i=1
|Bi⟩⟨Bi| = 1. (6.162)

We can use (6.156) to derive an infinite-dimensional analogue. We simply note that |Ψ (t)⟩
does not explicitly depend on the variable x, so it can actually be taken out of the integral,
and we get:

|Ψ (t)⟩ =
(∫ +∞

−∞
|x⟩ ⟨x|dx

)
|Ψ (t)⟩ , (6.163)

from which we get the infinite-dimensional completeness relation∫ +∞

−∞
|x⟩ ⟨x|dx = 1. (6.164)

This relation allows us to define an explicit inner product between states on our infinite-
dimensional Hilbert space as follows:

⟨Ψ (t) |Φ
(
t′
)
⟩ = ⟨Ψ (t) |

(∫ +∞

−∞
|x⟩ ⟨x|dx

)
|Φ
(
t′
)
⟩

=
∫ +∞

−∞
⟨Ψ (t) |x⟩⟨x|Φ

(
t′
)
⟩dx

=
∫ +∞

−∞
ψ∗ (t, x) ϕ

(
t′, x

)
dx,

where ψ∗ (t, x) ≡ ⟨Ψ (t) |x⟩ is the complex conjugate of the wavefunction for |Ψ (t)⟩ defined
in (6.157) (since as usual, switching the order of states in the inner product turns it into its
complex conjugate), and ϕ (t′, x) ≡ ⟨x|Φ (t′)⟩ is the wavefunction for the state |Φ (t′)⟩.
This is really nothing more than the familiar inner product we defined all the way back in
Section 3.2.2, except instead of summing on the components of a vector, we are integrating on
the values of a function! The vector in the discrete case was the representation of the state in a
particular basis (such as the standard basis), while the function in the continuous case is also
the representation of the state in a particular basis, in this case the position basis.

Now we can see that the normalization condition in (6.160) simply says that the norm of a
state has to be 1, as usual:

∥Ψ (t)∥ ≡
√
⟨Ψ (t) |Ψ (t)⟩ =

√∫ +∞

−∞
|ψ (t, x)|2 dx = 1. (6.165)

Problem 6.20. The expectation value of the position, given that the state of the system is
|Ψ (t)⟩, is defined as usual by

⟨x⟩ ≡ ⟨Ψ (t) |x̂|Ψ (t)⟩. (6.166)

By inserting the completeness relation (6.164), show that, in terms of the wavefunction ψ (t, x),
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the expectation value of x is

⟨x⟩ =
∫ +∞

−∞
x |ψ (t, x)|2 dx. (6.167)

Problem 6.21. Let V (x) be an arbitrary smooth function of x. When we promote x into an
operator, V (x) becomes the operator V (x̂). (For example, if V (x) = x2, then V (x̂) is the
operator x̂2.) By expanding V (x̂) in a Taylor series, show that |x⟩ is an eigenstate of V (x̂)
with eigenvalue V (x):

V (x̂) |x⟩ = V (x) |x⟩ . (6.168)

As a corollary, show that
⟨x|V (x̂) |Ψ (t)⟩ = V (x)ψ (t, x) . (6.169)

Exercise 6.22. A wavefunction is given by

ψ (t, x) = A e−x2
, A ∈ C. (6.170)

Find a value of A for which the wavefunction is properly normalized, that is, (6.160) is
satisfied. Then, calculate the expectation value ⟨x⟩ for this wavefunction.

6.5.3 The Momentum Operator

When we canonically quantize a particle, in addition to the position operator, we also promote
the momentum function to a Hermitian momentum operator p̂. This operator has momentum
eigenstates |p⟩, which correspond to measurements of momentum p:

p̂ |p⟩ = p |p⟩ . (6.171)

Everything that we discussed in the previous two sections also applies to the momentum
operator and its eigenstates – simply replace x with p. This also includes the wavefunction,
which can be represented in the momentum basis as

ψ (t, p) ≡ ⟨p |Ψ (t)⟩ . (6.172)

Now, let us recall that in Section 6.2 we found out that the unitary operator responsible for
shifts in time can be written as the exponential of the Hamiltonian. This can be written in
slightly different notation

e− i Ht0 |Ψ (t)⟩ = |Ψ (t + t0)⟩ . (6.173)

From this relation, we derived the Schrödinger equation (6.52), which tells us that the Hamil-
tonian – the Hermitian operator corresponding to energy – acts on states as a time derivative:

H |Ψ (t)⟩ = i
d
dt
|Ψ (t)⟩ . (6.174)

Since the energy is just the momentum in the time direction, we expect, in analogy, that the
momentum operator will act on states as a derivative with respect to position, and that its
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exponential will translate states in space. However, here we encounter a complication: in
non-relativistic quantum mechanics, time is considered to be just a label on the states |Ψ (t)⟩,
while position is the eigenvalue of the position operator66. Due to this complication, we won’t
give the derivation here, but simply state the result:

⟨x| p̂|Ψ (t)⟩ = − i
∂

∂x
⟨x |Ψ (t)⟩ = − i

∂

∂x
ψ (t, x) . (6.175)

This means that the representation of the momentum operator in the position basis is given
by the derivative with respect to position (times − i, which is a convention). This result will
be very useful in Section 6.6, when we discuss solution to the Schrödinger equation. Equation
(6.175) is often written simply as

p̂ = − i
∂

∂x
, (6.176)

but this actually incorrect (or at the very least, serious abuse of notation), since the momentum
operator is an abstract operator, and only becomes a derivative when represented in the
position basis!

By exponentiating the momentum operator, we get the translation operator e− i p̂a, a unitary
operator (as it has to be, since it must preserve norms) which translates position eigenstates a
distance a in space:

e− i p̂a |x⟩ = |x + a⟩ . (6.177)

By taking the adjoint of this expression and acting on a state |Ψ (t)⟩, we get

⟨x| ei p̂a |Ψ (t)⟩ = ⟨x + a|Ψ (t)⟩ = ψ (t, x + a) . (6.178)

Therefore, the translation operator translates not only position eigenstates but also wavefunc-
tions.

Problem 6.23. Calculate the expectation value of the momentum, ⟨p⟩, given that the state of
the system is |Ψ (t)⟩, in terms of the wavefunction ψ (t, x).

6.5.4 Quantum Interference

Let us consider the double-slit experiment, which we discussed all the way back in Section 2.1.3.
Schematically, the particle’s state can be described as a superposition of passing through slit
A and passing through slit B:

|Ψ⟩ = a |ΨA⟩+ b |ΨB⟩ , |a|2 + |b|2 = 1. (6.179)

66This is, in fact, a big problem when trying to combine quantum mechanics with special relativity, since
relativity merges space and time into a 4-dimensional spacetime, and this means space and time must be treated
on equal footing. However, we won’t go into that here. See also Footnote 57.
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We suppress the time dependence here, for brevity. The probability amplitude to measure the
particle at the position x is given by

ψ (x) ≡ ⟨x|Ψ⟩ = a⟨x|ΨA⟩+ b⟨x|ΨB⟩ ≡ aψA (x) + bψB (x) . (6.180)

The probability density is then, as usual, the magnitude squared of the amplitude:

|ψ (x)|2 = |aψA (x) + bψB (x)|2

= (a∗ψ∗A (x) + b∗ψ∗B (x)) (aψA (x) + bψB (x))

= a∗aψ∗A (x)ψA (x) + b∗bψ∗B (x)ψB (x) + a∗bψ∗A (x)ψB (x) + b∗aψ∗B (x)ψA (x)

= |a|2 |ψA (x)|2 + |b|2 |ψB (x)|2 + 2 Re (a∗bψ∗A (x)ψB (x)) .

The terms |a|2 |ψA (x)|2 and |b|2 |ψB (x)|2 are always positive, for any x. However, the third
term 2 Re (a∗bψ∗A (x)ψB (x)), called the interference term or sometimes the cross term (because
it “crosses” ψA and ψB), is a real number which can be either positive or negative, depending
on the specific values of a and b, as well as the specific position x in which ψ∗A (x) and ψB (x)
are calculated.

The interference term will either increase or decrease the probability to find the particle at x.
If it increases the probability, this is constructive interference, and it if decreases the probability,
this is destructive interference. This is precisely what is responsible for the interference pattern
in the double-slit experiment, illustrated in Figure 2.5; for different values of x, there will be
different amounts of constructive and destructive interference.

6.6 Solutions of the Schrödinger Equation

6.6.1 The Schrödinger Equation for a Particle

Recall the Schrödinger equation (6.52):

i
d
dt
|Ψ (t)⟩ = H |Ψ (t)⟩ . (6.181)

For a particle, we have the Hamiltonian (6.69):

H =
p2

2m
+ V (x) . (6.182)

Therefore, the Schrödinger equation becomes

i
d
dt
|Ψ (t)⟩ =

(
p̂2

2m
+ V (x̂)

)
|Ψ (t)⟩ , (6.183)

157



where we promoted the position and momentum to operators. To find the representation of
this equation in the position basis, we multiply by ⟨x| from the left:

⟨x| i d
dt
|Ψ (t)⟩ = ⟨x|

(
p̂2

2m
+ V (x̂)

)
|Ψ (t)⟩ . (6.184)

On the left-hand side, since the position eigenstate |x⟩ is independent of time, we can move
the time derivative out of the inner product:

⟨x| i d
dt
|Ψ (t)⟩ = i

d
dt
⟨x |Ψ (t)⟩ = i

d
dt

ψ (t, x) . (6.185)

On the right-hand side, since in the position representation we have

p̂ = − i
∂

∂x
, (6.186)

the first term will be

⟨x| p̂2

2m
|Ψ (t)⟩ = 1

2m

(
− i

∂

∂x

)2

ψ (t, x)

=
1

2m

(
− i

∂

∂x

)(
− i

∂

∂x

)
ψ (t, x)

= − 1
2m

∂2

∂x2 ψ (t, x) .

As for the second term, in Problem 6.21 you showed that

⟨x|V (x̂) |Ψ (t)⟩ = V (x)ψ (t, x) . (6.187)

In total, we get:

i
d
dt

ψ (t, x) =
(
− 1

2m
∂2

∂x2 + V (x)
)

ψ (t, x) . (6.188)

This is the Schrödinger equation in the position basis. It is a concrete differential equation
that one can solve for a variety of different potentials V (x).

Problem 6.24. In this problem you will prove Ehrenfest’s theorem, which states that:

⟨p⟩ = m
d ⟨x⟩

dt
, (6.189)

d ⟨p⟩
dt

= −
〈
V ′ (x)

〉
. (6.190)

(6.189) shows that the expectation values of the position and momentum in the quantum
theory satisfy the same relation as the position and momentum in the classical theory. (6.190)
is Newton’s second law (6.78) in terms of the expectation values of the momentum and the
force F ≡ −V ′ (x).
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A. Using the identities you proved in Section 4.4.1, calculate the commutator

[xn, p] , (6.191)

where n is a positive integer. (Hint: Make an educated guess and prove it by induction.)

B. Using the result of (A), calculate the commutator

[ f (x) , p] , (6.192)

where f (x) is an analytic function.

C. Recall (6.90):
d ⟨A⟩

dt
= − i ⟨[A, H]⟩ . (6.193)

Use this equation, and the result of (B), to prove equations (6.189) and (6.190).

D. In Problem 6.20, you showed that

⟨x⟩ =
∫ +∞

−∞
x |ψ (t, x)|2 dx, (6.194)

and in Problem 6.23, you calculated ⟨p⟩. Prove equations (6.189) and (6.190) using these
results and the Schrödinger equation in the position basis, (6.188).

Hint: You will have to use integration by parts, and assume67 that ψ (t, x)→ 0 as x→ ±∞.

E. Does (6.190) imply that the expectation values of x and p obey Newton’s laws? If so, prove
this for a general V (x). If not, find some V (x) which provides a counterexample.

Problem 6.25. Recall the time-independent Schrödinger equation (6.63), which is just the
eigenvalue equation for the Hamiltonian:

H |Ei⟩ = Ei |Ei⟩ . (6.195)

Let us denote the wavefunctions corresponding to the energy eigenstates as follows:

ψi (x) ≡ ⟨x|Ei⟩. (6.196)

They don’t depend on t, since we are assuming the Hamiltonian doesn’t depend on t either,
and energy is constant. Show that (for a point particle with mass m) these wavefunctions
satisfy the equation (

− 1
2m

∂2

∂x2 + V (x)
)

ψi (x) = Eiψi (x) . (6.197)

67This is pretty much always assumed to be true about wavefunctions in quantum mechanics. It can be justified
in two ways. First, according to (6.160), |ψ (t, x)|2 has to integrate to 1 so that the state is normalized. Therefore, it
makes sense that ψ (t, x) should vanish at infinity – although, if you look hard enough (you are encouraged to
try!), you can find normalized wavefunctions which nonetheless do not vanish at infinity. Second, if we create a
particle in the lab, we would expect the probability to find this particle a trillion light years away to be very close
to zero...
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6.6.2 Separation of Variables

Let us assume that the wavefunction can be separated into a part which depends only on x
and a part which depends only on t:

ψ (t, x) = ψi (x)ψt (t) . (6.198)

By plugging this into the Schrödinger equation (6.188) and dividing by ψ, we obtain the
equation

i
ψt

dψt

dt
= − 1

2m
1
ψi

∂2ψi

∂x2 + V (x) . (6.199)

Since the left-hand side only depends on t and the right-hand side only depends on x, we
conclude that they must in fact both be constant, that is, independent of both t and x –
otherwise, if for example the left-hand side was a function of t, then the right-hand side
would have to be a function of t also, in contradiction with our assumption that it only
depends on x. This is called separation of variables.

Let Ei be the constant that both sides are equal to. Then we get two equations. The first
equation will just be the eigenvalue equation (6.197), which therefore implies that Ei is the
energy (and thus must be real). The other equation will be

dψt

dt
= − i Eiψt. (6.200)

Recalling (6.9), we see that the solution to (6.200) is simply

ψt = e− i Eit . (6.201)

Therefore, any separable solution to the Schrödinger equation is given by a wavefunction of
the form

ψ (t, x) = ψi (x) e− i Eit . (6.202)

These are called stationary states. Since these states are energy eigenstates, they have a well-
defined energy Ei.

As it turns out, since the Schrödinger equation is linear, the most general solution to the
equation is a linear combination of stationary states:

ψ (t, x) = ∑
i

αiψi (x) e− i Eit, (6.203)

where αi ∈ C are constant coefficients and Ei are all the possible energy eigenstates, of which
there can be infinitely many. Of course, this is nothing other than a superposition of energy
eigenstates, represented in the position basis, and therefore the coefficients αi are none other
than the probability amplitudes to measure each energy Ei given the state |Ψ (t)⟩.
In other words, the general solution to the Schrödinger equation simply amounts to writing
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the state of the system as a superposition with respect to the eigenbasis of a particular
observable – the Hamiltonian. With the time dependence out of the way, all that remains is
to solve the time-independent Schrödinger equation (6.197) for ψi, and find the coefficients
αi. The solution will depend on the explicit form of the potential V (x). However, this is,
of course, the hard part! Thousands upon thousands of pages have been written in the last
100 years or so about solutions (or even just approximations of solutions) to the Schrödinger
equation for all kinds of different potentials.

Unfortunately, our course has come to an end, and we won’t have time to work out any specific
solutions. The focus of this course has been on developing deep intuition and conceptual
understanding of quantum theory, as it is formulated in modern 21st-century theoretical
physics. For this reason, we spent the vast majority of the course developing the entire
mathematical framework of the theory from scratch, highlighting and debunking common
misconceptions, focusing on concepts and their meaning rather than calculations, and giving
examples from discrete systems, where the math is simple, so we could concentrate our efforts
on understanding the physics without being bogged down by the math.

Still, solving the Schrödinger equation is something every physicist should know how to
do, and in Problem 6.28 you will find the solutions corresponding to two simple potentials,
related to scattering and tunneling of particles in one dimension.

Problem 6.26. Show that the probability density of a stationary state, as well as the expectation
value of any observable A with respect to that state, are independent of t.

Exercise 6.27. A wavefunction is given at time t = 0 by

ψ (0, x) = α1ψ1 (x) + α2ψ2 (x) . (6.204)

What is the wavefunction ψ (t, x) at some other time t, and what is the corresponding proba-
bility density?

Problem 6.28. Solve the Schrödinger equation for particular potentials. Solve it for the
following two simple potentials:

• Finite square well – scattering:

V (x) =


0 x < −a,

−V0 −a < x < a,

0 x > a.

(6.205)

• Finite square barrier – tunneling:

V (x) =


0 x < −a,

+V0 −a < x < a,

0 x > a.

(6.206)
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In both cases, a and V0 are two positive numbers. Make nice plots of the potentials and the
wavefunctions. The solutions are not trivial, and you are allowed – even encouraged – to
make use of textbooks and online resources. However, you should write the solutions in your
own words and summarize what you learned from the results.

6.7 Lagrangian Mechanics and the Path Integral Formulation

In this section, we will learn the basics of path integral quantization. This is a significantly
different method of quantizing a classical system, and it is in fact the preferred method in
much of 21st-century physics, including quantum field theory, quantum gravity, and other
fundamental quantum theories.

6.7.1 A Quick Review of Classical Lagrangian Mechanics

Just as canonical quantization starts from a classical system formulated using Hamiltonian me-
chanics, path integral quantization starts from a classical system formulated using Lagrangian
mechanics. In Hamiltonian mechanics, the degrees of freedom are position x and momentum
p, or more generally a set of positions x = (x1, . . . , xn) and momenta p = (p1, . . . , pn), and
they can be used to construct a Hamiltonian H (x, p). In Lagrangian mechanics, the degrees of
freedom are position x and velocity ẋ, or more generally a set of positions x = (x1, . . . , xn)

and velocities ẋ = (ẋ1, . . . , ẋn) , and they can be used to construct a Lagrangian L (x, ẋ).

For example, the Lagrangian of a point particle is:

L (x, ẋ) =
1
2

mẋ2 −V (x) . (6.207)

Notice that the first term is just the usual Newtonian kinetic energy term 1
2 mv2. Compare this

to the Hamiltonian of a point particle (6.69):

H =
p2

2m
+ V (x) . (6.208)

The first term in both is the kinetic energy, except that in the Lagrangian we use the velocity
ẋ and in the Hamiltonian we use the momentum p ≡ mẋ. The second term is the potential
energy, but in the Hamiltonian we add the potential energy (so that the Hamiltonian is the
total kinetic + potential energy) while in the Lagrangian we subtract the potential energy (so
that the Lagrangian is the difference between kinetic and potential energy).

It is possible to do some classical mechanics using just the Lagrangian itself, but to understand
its meaning from first principles, and to apply Lagrangian mechanics to more complicated
systems, we must go one step further and define the action:

S [x] ≡
∫

L (x, ẋ)dt. (6.209)
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This is simply the integral of the Lagrangian over time. The action is an example of a functional,
which is a map that takes a function and returns a real number68. Given a particular function
x (t), the action functional produces a real number by integrating the Lagrangian in terms of
this function and its derivative.

However, the integration itself is almost never actually performed! Usually, we simply use
the action functional as an abstract quantity in order to derive the equations of motion from
it. This is done using the principle of stationary action: the equations of motion are given by
stationary points of the action.

A stationary points is any point where the derivative is zero: either a minimum, maximum,
or inflection point69. Sometimes you might hear the expression “principle of least action”, but
that is only a historical term and should not be used, because the equations of motion don’t
always correspond to a minimum of the action! As an example, in general relativity, the action
for a point particle is the particle’s proper time, and the equations of motion correspond to
the maximum of proper time70.

The principle of stationary action can be given in terms of the functional differential as follows:

δS [x] = 0. (6.210)

You can think of the functional differential as the change in S due to an infinitesimal change
in the function x (t). This is similar to the usual notion of a differential d f of a function f (x),
which is the change in f due to an infinitesimal change in the argument x, which is a number.
However, in the case of a functional differential, we change an entire function, not a number.
Since x (t) specifies the path (or trajectory) of the particle as a function of time, we can think of
an infinitesimal change in x (t) as a slight deformation of this path, which can be in different
amounts at different points along the path.

This condition δS [x] = 0 is equivalent to the differential (or derivative) of a function vanishing,
so it is a generalization of the concept of a stationary point, except that now instead of a point
where the derivative vanishes, we have a function where the functional derivative vanishes.

Let us calculate this explicitly between two arbitrary points in time, t1 and t2:

δS =
∫ t2

t1

δL dt =
∫ t2

t1

(
∂L
∂x

δx +
∂L
∂ẋ

δẋ
)

dt. (6.211)

68More generally, a functional on any vector space is a map from vectors to scalars. So in Cn, a bra ⟨ψ| is actually
a functional, since it takes any vector |ϕ⟩ to a complex number. The space of continuous real functions is a vector
space over the field of real numbers (prove this!), so f is a functional on this space.

69An inflection point is one where the function changes from being concave to convex. For example, the
function x3 at x = 0 has vanishing derivative at x = 0, but it’s neither a minimum nor a maximum, it’s an
inflection point.

70You might claim that if the action was the negative of the proper time, then this would actually be the
minimum. However, this is misleading because the proper time is the square root of a quantity (the spacetime
interval), so we can actually take it to be either positive or negative in any case. No matter the sign, the equations
of motion always correspond to the maximum of the magnitude of the action.
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Here we used the chain rule71. The functional derivative commutes with the usual derivative,
so we have

δẋ = δ

(
dx
dt

)
=

d
dt

(δx) . (6.212)

Therefore we can integrate by parts. From the product rule we get

∂L
∂ẋ

δẋ =
∂L
∂ẋ

d
dt

(δx) =
d
dt

(
∂L
∂ẋ

δx
)
− d

dt

(
∂L
∂ẋ

)
δx, (6.213)

and so

δS =
∫ t2

t1

(
∂L
∂x

δx +
d
dt

(
∂L
∂ẋ

δx
)
− d

dt

(
∂L
∂ẋ

)
δx
)

dt

=
∫ t2

t1

((
∂L
∂x
− d

dt

(
∂L
∂ẋ

))
δx +

d
dt

(
∂L
∂ẋ

δx
))

dt

=
∫ t2

t1

[(
∂L
∂x
− d

dt

(
∂L
∂ẋ

))
δx
]

dt +

(
∂L
∂ẋ

δx
∣∣∣∣t2

t1

)
.

The last term vanishes if we assume that the endpoints are fixed, that is, δx (t1) = δx (t2) = 0.
This makes sense in the case of a particle, since we can assume that the particle must start and
end at two specific points, and only the path connecting these two points can vary. We are
thus left with

δS =
∫ t2

t1

[(
∂L
∂x
− d

dt

(
∂L
∂ẋ

))
δx
]

dt. (6.214)

To satisfy δS = 0, the integral must vanish for any choice of δx. Note that δx is a function of t,
since it’s a functional differential, and thus it is being integrated on – we can’t take it out of
the integral! The only way to guarantee that the integral vanishes for any δx ̸= 0 is if the rest
of the integrand always vanishes. Therefore, δS = 0 is equivalent to

∂L
∂x
− d

dt

(
∂L
∂ẋ

)
= 0. (6.215)

This is called the Euler-Lagrange equation. Given a choice of Lagrangian L, we can use this
equation to find the equation of motion for the system, which can then be solved to obtain
x (t).

As an example, consider the Lagrangian for a point particle (6.207):

L (x, ẋ) =
1
2

mẋ2 −V (x) . (6.216)

71The functional differential and functional derivative can be defined rigorously, and their properties, such as
the chain rule, can be proven from this definition. Since this section is supposed to be just a quick review, and
I’m only using these concepts in the derivation of the equations of motion, I will not attempt to give a rigorous
definition or prove any properties here, but you are encouraged to look them up.
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We have
∂L
∂x

=
∂

∂x

(
1
2

mẋ2 −V (x)
)
= −V ′ (x) = F, (6.217)

where F is the force due to the potential V, and

d
dt

(
∂L
∂ẋ

)
=

d
dt

(
∂

∂ẋ

(
1
2

mẋ2 −V (x)
))

=
d
dt

(mẋ) = mẍ, (6.218)

where in both cases we assumed that x and ẋ are independent variables. Therefore, the
equation of motion is

F = mẍ, (6.219)

which is just Newton’s second law – the same equation we found from the Hamiltonian in
(6.81).

In fact, the Lagrangian and Hamiltonian formulations are closely related. Given a Lagrangian
L, we can find the momentum corresponding to x by

p ≡ ∂L
∂ẋ

. (6.220)

This allows us to transform from L (x, ẋ), which uses the velocity ẋ, to H (x, p), which uses the
momentum p. This is known as a Legendre transformation. Aside from converting velocity to
momentum, we also need to find the actual Hamiltonian. Intuitively, since L = K (ẋ)−V (x)
and H = K (p) + V (x), this should involve writing the kinetic energy K in terms of p instead
of ẋ and then inverting the sign of V. In practice, it is not always clear which part of the
Lagrangian is the kinetic energy and which part is the potential energy. However, there is a
transformation that always works:

H = pẋ− L
∣∣∣∣

ẋ 7→ẋ(p)
, (6.221)

provided we can invert the relation (6.220) to find how to express ẋ in terms of p. For example,
in the case of a point particle we have

p =
∂L
∂ẋ

=
∂

∂ẋ

(
1
2

mẋ2 −V (x)
)
= mẋ, (6.222)

which is just the Newtonian momentum p = mv, and we can invert this to find ẋ = p/m.
Thus we find that the Hamiltonian is

H = pẋ− L
∣∣∣∣

ẋ 7→p/m
= p

( p
m

)
−
(

1
2

m
( p

m

)2
−V (x)

)
=

p2

2m
+ V (x) , (6.223)

which indeed matches the Hamiltonian (6.69).

Problem 6.29. Any system can, in fact, be described by an infinite number of equivalent
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Lagrangians. These Lagrangians are all related; find the most general relation between two
arbitrary Lagrangians L and L′ such that they produce the same equations of motion.

Problem 6.30. Prove that if instead of just one coordinate x we have a set of coordinates
x = (x1, . . . , xn), then the condition δS = 0 results in n Euler-Lagrange equations, one for
each coordinate.

Problem 6.31. What form will the Euler-Lagrange equation take if instead of just the first
derivative of x, the Lagrangian involved derivatives of x up to order N?

Problem 6.32. Show that Hamilton’s equations (6.75) and (6.76) follow from the Euler-
Lagrange equation (6.215) after performing a Legendre transformation. One way to do
this is by calculating the differential of (6.221).

Problem 6.33. Consider an n-dimensional Lagrangian L (x, ẋ) where x = (x1, . . . , xn). Assume
that the Lagrangian is independent of xi for some i; we then say that the coordinate xi is
a cyclic coordinate. Show that this implies there is a conserved quantity in the system, and
find that quantity. This is a special simple case of Noether’s theorem, which says that every
continuous symmetry of the action has a corresponding conserved quantity. In this case, the
symmetry is trivial since any change to xi will not affect the action.

Exercise 6.34. Find the Lagrangian for the classical harmonic oscillator by applying a Legendre
transformation to the Hamiltonian (6.95), and calculate the equations of motion using the
Euler-Lagrange equation.

6.7.2 Motivation for Path Integral Quantization

Recall the definition of the unitary evolution operator (6.56):

U (tF ← t0) ≡ e− i H(tF−t0), (6.224)

where H is the Hamiltonian, t0 is the initial time, and tF is the final time. Let T ≡ tF − t0 be
the duration of evolution, then we can rewrite this operator as

U (T) ≡ e− i HT . (6.225)

Consider a particle at point x0 at time t0. What is the probability amplitude to find that
particle at some other point xF at time tF?

We start with the eigenstate |x0⟩ at time t0, then evolve it to the state e− i HT |x0⟩ at time tF, and
finally perform a measurement of the position operator x̂. As usual, the state can be expanded
in a superposition in terms of the basis eigenstates of x̂, and the amplitude to find the particle
at point xF will then be the coefficient of |xF⟩ in this superposition. The superposition is given
by (6.156) with |Ψ (t)⟩ = e− i HT |x0⟩:

e− i HT |x0⟩ =
∫ +∞

−∞
|x⟩ ⟨x| e− i HT |x0⟩dx. (6.226)
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Then clearly the amplitude to find the particle at xF is the inner product

A = ⟨xF| e− i HT |x0⟩ . (6.227)

Next, consider the single-slit experiment. A particle is emitted from x0 at time t0, passes through
a slit on a barrier at x1, and is detected at time tF at some position xF along the screen. What
is the amplitude for this process?

Recall that the probability for two events to happen is the product of the probabilities of
each event. For example, when rolling a 6-sided die, the probability to get a 1 is 1/6. So
when rolling two such dice, the probability to get 1 on both dice is 1/6 · 1/6 = 1/36. Since
probability in quantum mechanics is the magnitude-squared of the amplitude, amplitudes
must obey this rule as well. Therefore, assuming for simplicity that each half of the path takes
an equal time ∆T ≡ T/2, the amplitude for the path x0 → x1 → xF is:

A = ⟨xF| e− i H∆T |x1⟩ ⟨x1| e− i H∆T |x0⟩ . (6.228)

What if we have72 two slits, x(1)1 and x(2)1 , as in the double-slit experiment (Figure 2.3)? Now
there are two paths that can result in the particle reaching xF: one where it passes through
x(1)1 and one where it passes through x(2)1 .

Again, recall that the probability to get one of several specific outcomes for a measurement is
the sum of the probabilities for each outcome. For example, the probability to get either 1 or 2
on a 6-sided die is 1/6 + 1/6 = 2/6. Amplitudes also obey this rule, although in this case,
adding the amplitudes might actually lower the probability due to destructive interference –
indeed, that is exactly what makes quantum mechanics distinct from classical probabilistic
theories!

Therefore, the total amplitude to find the particle at xF must be the sum of the amplitudes for
each possible path x0 → x(1)1 → xF and x0 → x(2)1 → xF :

A = ⟨xF| e− i H∆T |x(1)1 ⟩⟨x
(1)
1 | e

− i H∆T |x0⟩+ ⟨xF| e− i H∆T |x(2)1 ⟩⟨x
(2)
1 | e

− i H∆T |x0⟩. (6.229)

Okay, so what if we have n slits x(1)1 , . . . , x(n)1 ? In this case, the amplitude will clearly be:

A =
n

∑
i=1
⟨xF| e− i H∆T |x(n)1 ⟩⟨x

(n)
1 | e

− i H∆T |x0⟩. (6.230)

Now, imagine that there is no barrier at all; the particle doesn’t pass through any slits, it just
arrives directly at xF. But if you think about it, this is actually equivalent to having the entire
barrier “made of” an infinite continuum of slits! In this case, the sum over a finite number
of discrete slits in the amplitude will become an integral over each possible value of the slit

72The reason for this weird notation is that in a bit I will introduce additional barriers. So the subscript is the
number of the barrier, and the superscript is the number of the slit on that barrier.
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location, which we label x1:

A =
∫

dx1 ⟨xF| e− i H∆T |x1⟩ ⟨x1| e− i H∆T |x0⟩ . (6.231)

Notice that we can also write this as follows:

A = ⟨xF| e− i H∆T
(∫
|x1⟩ ⟨x1|dx1

)
e− i H∆T |x0⟩ = ⟨xF| e− i HT |x0⟩ , (6.232)

where we used the fact that T = ∆T + ∆T (the total time to get from x0 to xF is the sum of the
time to go through each half of the path) and the completeness relation (6.164):∫

|x1⟩ ⟨x1|dx1 = 1. (6.233)

In other words, this result, which we arrived at by considering the different paths a particle
could go through, is simply a trivial consequence of the completeness relation! Indeed, this
provides a nice illustration of the physical meaning of the completeness relation.

But now, let us take this one step further. Imagine that there is another barrier at x2, between
x1 and xF. The amplitude to get from x0 to xF must now take into account going through
different slits in both barriers, so it will be the product of three amplitudes: one for x0 → x1,
one for x1 → x2, and one for x2 → xF. Let us assume for simplicity that each of the 3 parts
of the path x0 → x1 → x2 → xF takes equal time ∆T ≡ T/3. If we treat x2 in the same way
as we did x1, removing the barrier and considering the empty space to be composed of an
infinite number of slits, then we get

A =
∫

dx1

∫
dx2 ⟨xF| e− i H∆T |x2⟩ ⟨x2| e− i H∆T |x1⟩ ⟨x1| e− i H∆T |x0⟩ . (6.234)

Note that, again, we could have also arrived at this by starting with ⟨xF| e− i HT |x0⟩, splitting
the exponential into 3 equal parts, and inserting the completeness relation between each two
exponentials.

This is the amplitude for 2 barriers. Let’s increase this to N barriers at x1, . . . , xN , and assume
that each part of the path takes equal time ∆T ≡ T/ (N + 1). Then we should integrate over
the infinite continuum of slits in each barrier:

A =

(
N

∏
j=1

∫
dxj

)
⟨xF| e− i H∆T |xN⟩ · · · ⟨x2| e− i H∆T |x1⟩ ⟨x1| e− i H∆T |x0⟩ . (6.235)

A more concise way to write this is by taking xN+1 ≡ xF, so that we have:

A =

(
N

∏
j=1

∫
dxj

)(
N

∏
k=0
⟨xk+1| e− i H∆T |xk⟩

)
. (6.236)

Note that j starts from 1 while k starts from 0, since we have N integrals but N + 1 amplitudes,
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with an integral inserted between each two adjacent amplitudes.

The way to generalize this even further should now be obvious: not only do we treat each
barrier as an infinite continuum of slits, we also treat the entire space between x0 and xF as
an infinite continuum of barriers. Schematically, this is achieved by taking N → ∞. So in
conclusion, we have:

⟨xF| e− i HT |x0⟩ = lim
N→∞

(
N

∏
j=1

∫
dxj

)(
N

∏
k=0
⟨xk+1| e− i H∆T |xk⟩

)
, (6.237)

where
xN+1 ≡ xF, ∆T ≡ T

N + 1
. (6.238)

In other words, to calculate the amplitude for the particle to get from x0 to xF, we must take
into account every possible path between these two points!

6.7.3 The Inner Product of Position and Momentum Eigenstates

What happens when we take the inner product of a momentum eigenstate with a position
eigenstate? Recall equation (6.175):

⟨x| p̂|Ψ (t)⟩ = − i
∂

∂x
⟨x |Ψ (t)⟩ . (6.239)

If we take |Ψ (t)⟩ 7→ |p⟩, that is, the state of the particle is a momentum eigenstate, we get:

⟨x| p̂|p⟩ = − i
∂

∂x
⟨x | p⟩ . (6.240)

On the other hand, since |p⟩ is an eigenstate of p̂ with eigenvalue p, we have

⟨x| p̂|p⟩ = p⟨x|p⟩. (6.241)

Comparing the two equations, we find a differential equation for ⟨x|p⟩:

∂

∂x
⟨x|p⟩ = i p⟨x|p⟩. (6.242)

In other words, the function ⟨x|p⟩ is its own derivative, with an additional factor of i p.
Recalling our discussion of the exponential function in Section 6.1.1, we immediately see that
the solution to this equation is:

⟨x|p⟩ = A ei px, (6.243)

where A is an integration constant. To determine A, we start from the completeness relation
in terms of the momentum eigenbasis:∫

|p⟩ ⟨p|dp = 1. (6.244)
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Multiplying by |x⟩ on the right and ⟨x′| on the left, we get:∫
⟨x′|p⟩⟨p|x⟩dp = ⟨x′|x⟩ = δ

(
x′ − x

)
. (6.245)

On the other hand, plugging (6.243) into the integral, and inverting the inner product to get
⟨p|x⟩ = A∗ e− i px, we get∫

⟨x′|p⟩⟨p|x⟩dp =
∫ (

A ei px′
) (

A∗ e− i px)dp

= |A|2
∫

ei p(x′−x) dp.

Therefore, we have that
δ
(

x′ − x
)
= |A|2

∫
ei p(x′−x) dp. (6.246)

However, a known representation for the Dirac delta distribution is

δ
(
x′ − x

)
=

1
2π

∫
ei p(x′−x) dp. (6.247)

This simply means that the Fourier transform of δ (x) is ei px; you will prove it in Problem 6.35.
Therefore, we conclude that (up to phase)

A =
1√
2π

, (6.248)

and thus (6.243) becomes

⟨x|p⟩ = 1√
2π

ei px . (6.249)

Problem 6.35. Prove (6.247).

6.7.4 Deriving the Path Integral

Consider the simplest Hamiltonian, that of a free particle:

H =
p2

2m
. (6.250)
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Let us find an expression for the amplitude ⟨xk+1| e− i H∆T |xk⟩ for some k. We can insert the
momentum completeness relation and use (6.249):

⟨xk+1| e− i p̂2∆T/m |xk⟩ =
∫
⟨xk+1| e− i p̂2∆T/2m |p⟩⟨p|xk⟩dp

=
∫

e− i p2∆T/2m⟨xk+1|p⟩⟨p|xk⟩dp

=
1

2π

∫
e− i p2∆T/2m ei p(xk+1−xk) dp

=
1

2π

∫
exp

[
i
(
−∆T

2m
p2 + (xk+1 − xk) p

)]
dp,

where in line 2 we applied the operator e− i p̂2∆T/m to |p⟩, which results in the number
e− i p2∆T/m (note that there is no hat on the p), and then moved this number to the left. This is
a Gaussian integral, which may be calculated exactly, as you will prove in Problem 6.36. The
result is:

⟨xk+1| e− i p̂2∆T/m |xk⟩ =
√

m
2π i ∆T

exp
(

i
m

2∆T
(xk+1 − xk)

2
)

, (6.251)

which we rewrite as

⟨xk+1| e− i p̂2∆T/m |xk⟩ =
√

m
2π i ∆T

exp

(
i

m
2

∆T
(

xk+1 − xk

∆T

)2
)

. (6.252)

This is the expression for one amplitude, so for the product (6.237) we find

⟨xF| e− i HT |x0⟩ = lim
N→∞

(
N

∏
j=1

∫
dxj

)(
N

∏
k=0

√
m

2π i ∆T
exp

(
i

m
2

∆T
(

xk+1 − xk

∆T

)2
))

= lim
N→∞

( m
2π i ∆T

)(N+1)/2
(

N

∏
j=1

∫
dxj

)(
exp

(
i

m
2

∆T
N

∑
k=0

(
xk+1 − xk

∆T

)2
))

.

Instead of taking the limit N → ∞, let us take the equivalent limit ∆T ≡ T/ (N + 1) → 0.
Then we have from the definition of a derivative

lim
∆T→0

xk+1 − xk

∆T
= ẋ, (6.253)

and we also know that the discrete sum becomes a continuous integral73:

lim
∆T→0

(
N

∑
k=0

∆T

)
=
∫ T

0
dt. (6.254)

73Indeed, this is one way in which integrals can be rigorously defined. The sum is then called a Riemann sum,
and if the limit exists, the function is called Riemann integrable.
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Therefore

lim
∆T→0

(
m
2

∆T
N

∑
k=0

(
xk+1 − xk

∆T

)2
)

=
∫ T

0

1
2

mẋ2dt. (6.255)

We recognize here the Lagrangian of a free particle:

∫ T

0

1
2

mẋ2dt =
∫ T

0
L (x, ẋ) dt = S [x] , (6.256)

where we used the definition of the action, (6.209). Thus we get

⟨xF| e− i HT |x0⟩ = lim
N→∞

( m
2π i ∆T

)(N+1)/2
(

N

∏
j=1

∫
dxj

)
ei S[x] . (6.257)

We now define a path integral of a functional F [x] as follows:

∫
F [x]Dx ≡ lim

N→∞

( m
2π i ∆T

)(N+1)/2
(

N

∏
j=1

∫
dxj

)
F [x] . (6.258)

Here,Dx means “integrate over all possible paths x (t)”, so we are integrating not with respect
to a numerical variable, but with respect to a function. In other words, this is a functional
integral, and it is essentially the sum of the values of the functional for every possible path,
times a suitable integration measure.

Unfortunately this definition isn’t quite rigorous, and introduces a myriad of mathematical
issues, the most important of which is whether this infinite product of integrals actually
converges! Resolving these issues is very important, but much beyond the level of our course,
so I will not discuss it here.

In conclusion, we find that the amplitude to get from x0 to xF is given by a path integral:

⟨xF| e− i HT |x0⟩ =
∫

ei S[x]Dx. (6.259)

We did this calculation for a free particle, for simplicity, but it is in fact possible to do this for
an arbitrary Hamiltonian, and the result will be the same: we will always get the integral of
the corresponding Lagrangian, and hence the action, inside the exponential.

Problem 6.36.

A. Prove that ∫ +∞

−∞
e−x2

dx =
√

π. (6.260)

B. Using the result of (A), prove the more general integral

∫ +∞

−∞
e−ax2+bx+c dx =

√
π

a
exp

(
b2

4a
+ c
)

. (6.261)

C. Using the result of (B), prove (6.251).
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Problem 6.37. Here we derived the path integral representation for the amplitude to get from
position x0 to position xF. This is an amplitude that involves only eigenstates of position. In
the more general case, we want to know the amplitude to get from some initial state |Ψ0⟩
to some final state |ΨF⟩, namely ⟨ΨF| e− i HT |Ψ0⟩. What will be the path integral for this
amplitude?

6.7.5 Applications of Path Integrals

We found that to calculate the amplitude, we must integrate over all possible paths x (t), with
the integrand being none other than the exponential of the action times i. It is understood
that the paths x (t) we integrate over must start at x0 and end at xF, but other than that, the
paths can be arbitrary.

In fact, some paths may be completely unrealistic, with the particle going to the Andromeda
galaxy for a second and then coming back to Earth the following second! This, of course,
violates relativity, but to properly impose the speed of light limit, we must use quantum field
theory, a more fundamental theory which is consistent with both quantum mechanics (at the
non-relativistic limit) and special74 relativity (at the classical limit).

As you showed in Problem 6.37, the path integral allows us to calculate the amplitude to
go from any state to any other state – using just the classical action, without the hassle of
promoting functions to operators, imposing commutation relations, and acting with these
operators on the states. It is possible to formulate all known quantum theories, including
quantum field theory, in terms of path integrals, without doing any canonical quantization.

Another thing we can do with path integrals is to obtain the classical limit in an intuitive
way. We can think of the classical limit as a composite system where numerous microscopic
quantum particles make up a single macroscopic classical object. When we have many
different quantum particles together in one system, the total action for the system is the sum
of the individual actions for each particle. Therefore, it is sensible75 to take the classical limit
to be S [x]→ ∞, as we expect the total action to be very large in magnitude compared to the
action of a single particle. In this limit, we can use the stationary phase approximation (as you
will do in Problem 6.38) to obtain the approximation∫

ei S[x]Dx ≈ ei S[xc], (6.262)

where xc (t) is the classical path, that is, the path that solves the Euler-Lagrange equation
(6.215) with the boundary conditions x (t0) = x0 and x (tF) = xF; in other words, xc (t) is a

74In fact, quantum field theory is also consistent with general relativity – as long as gravity remains classical,
and only matter (as described by the fields) is quantum. It is currently unknown how to describe gravity itself, as
described by general relativity, as a quantum theory; such a theory would be called quantum gravity.

75In most quantum mechanics textbooks, the integrand of the path integral is given by ei S[x]/h̄ where h̄ is
Planck’s constant, and the classical limit is given by h̄ → 0. However, this doesn’t make much sense, as h̄ is a
dimensionful physical constant, so its numerical value has no physical meaning; all you’re doing by taking h̄→ 0
is redefining your units of measurement. Here I am keeping h̄ ≡ 1 fixed, and the classical limit is S [x] → ∞,
which is equivalent because S [x] /h̄→ ∞ under both h̄→ 0 and S [x]→ ∞.
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stationary point of the action.

This happens because the exponential integrand is an oscillating function, and it can be
shown that whenever S varies, the oscillations cancel each other by destructive interference.
However, stationary points, where the action does not vary, do not get canceled. But as
we have seen, stationary points are exactly those which correspond to classical paths. The
classical path therefore has the highest probability, and this explains why we observe objects
to follow classical trajectories even though each individual particle behaves according to the
laws of quantum mechanics.

Unfortunately, as I mentioned earlier, it is hard to formulate a rigorous mathematical definition
of the path integral. It can be defined rigorously for non-relativistic quantum mechanics using
the dirty trick of taking time to be imaginary, t→ i t, in which case the exponent becomes real
and the integral becomes easier to define (this is called a Wick rotation). However, in quantum
field theory, path integrals have not yet been defined rigorously except in some simple cases,
such as for some fields in 2 spacetime dimensions. Physicists nevertheless use path integrals
ubiquitously in quantum field theory, with great (and even experimentally verified) success,
but the integrals themselves cannot be computed – instead, perturbation theory must be used
to obtain approximate solutions.

In fact, as I mentioned in the beginning of this chapter, in 21st-century physics – and especially
in quantum field theory, which is the fundamental framework used in most fields of modern
theoretical physics – we usually prefer path integral quantization over canonical quantization.
You can find more details in (recent) quantum field theory textbooks.

Problem 6.38. Prove (6.262) using the stationary phase approximation (if you are not already
familiar with this approximation from other courses, look it up).

6.8 Epilogue

Unfortunately, our course has now come to an end. Even though this is a 4th-year undergrad-
uate course, I taught you many advanced topics in quantum theory that most physicists only
learn in graduate school – or not at all! I hope you had fun, and that this course helped you
develop a deep intuition for quantum theory, understand its most important concepts and
consequences, and demystify common misconceptions.
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Decoherence time, 109
Degenerate eigenvectors, 100
Determinant, 81
Determinism, 84
Deutsch’s algorithm, 120
Diagonal matrix, 42
Diagonalizable matrix, 42
Dimensionful constants, 54
Dimensionless constants, 54
Dirac delta function, 151
Dirac notation, 21
Discriminant, 15
Distribution (generalized function), 151
Distributive operation, 22
Double-slit experiment, 7, 156, 167
Dual vector, 23

Ehrenfest’s theorem, 158
Eigenspace, 100
Eigenstates, 58
Eigenvalue, 36
Eigenvector, 36

Degenerate, 100
Energy, 138

Kinetic, 139
Potential, 139

Energy eigenstates, 138
Entangled state, 79
EPR states, 82
Equations of motion

From Hamiltonian, 144
From Lagrangian, 163

Equivalence class of vectors, 56
Euler’s formula, 20, 130
Euler-Lagrange equation, 164
Even permutation, 68
Everett interpretation, 106
Evolution Axiom, 95
Excited state, 150
Exclusive OR, 97
Expected (or expectation) value, 48

Of a quantum observable, 62
Exponent, 128
Exponential

Of a matrix, 130
Time-ordered, 137

Exponential function, 128

Fair coin or die, 46
Field (algebra), 15
Fine-structure constant, 54
Finite square barrier, 161
Finite square well, 161
First excited state, 150
Fourier transform, 170
Free particle, 170
Frequency, 144
Functional, 163
Functional derivative, 163
Functional differential, 163
Functional integral, 172
Fundamental theorem of algebra, 16

Gate
Classical AND, 96
Classical NOT, 96
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Classical OR, 96
Classical XOR, 97
Quantum CNOT, 98
Quantum Hadamard, 98, 119
Quantum NOT (X), 97
Quantum Z, 97

Gaussian distribution, 51
Gaussian integral, 171
Generalized momentum, 141
Gluon, 144
Gram–Schmidt process, 44
Gravitational constant, 55
Ground state, 138, 149
GRW model, 108

Hadamard gate, 98, 119
Hadamard transform, 123
Hamilton’s equations, 141
Hamiltonian

Classical, 139
Of a point particle, 140
Quantum, 134, 135
Time-independent, 136

Harmonic oscillator
Classical, 144, 166
Quantum, 144

Hat notation for operators, 150
Heaviside step function, 152
Hermitian matrix, 37
Hermitian operator, 57
Hidden variable theories, 71

And the measurement problem, 107
Local, 84
Non-local, 71, 87

Higgs boson, 144
Hilbert space, 24

Identity matrix, 28
Identity scalar, 22
Identity vector, 22
Imaginary number, 16
Imaginary unit, 15

Inflection point, 163
Inner product, 24

Infinite-dimensional case, 154
Integration constants, 145
Interference, 10, 126, 157
Interpretations of quantum mechanics, 105
Inverse matrix, 35
Inverse vector, 22
Invertible matrix, 35
Involution, 17
Involutory matrix, 65
Isomorphism, 19

Jacobi identity, 89, 142
Joint probability, 47

Ket, 24
Kinetic energy, 139
Kronecker delta, 26, 151

Ladder operators, 146, 149
Lagrangian, 162

Of a point particle, 162
Lagrangian mechanics, 162
Lebesgue measure, 153
Legendre transformation, 165
Levi-Civita symbol, 68
Linear combination, 25
Linear inner product, 25
Linearly independent, 25
Loaded coin or die, 46
Local hidden variable theories, 84
Local realism, 85
Locality, 85
Logarithm, 129

Of a matrix, 131
Logic gate

Classical, 96, 118
Quantum, 97, 118

Loop quantum gravity, 55

Magnitude of a complex number, 19
Many-worlds interpretation, 106
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Matrices inside inner products, 36
Matrix, 27
Matrix anti-commutator, 68
Matrix commutator, 68, 88
Matrix determinant, 81
Matrix exponential, 130
Matrix logarithm, 131
Matrix product, 34
Mean, 48
Measurement Axiom (Projective), 100
Measurement Axiom (Simplified), 104
Measurement problem, 105
Model, 112
Momentum eigenstates, 155
Momentum operator, 155
Momentum space, 139
Multiplication of vector by scalar, 21

Natural logarithm, 129
Newton’s second law, 141
No collapse, 106
No-cloning theorem, 113
No-communication theorem, 84
No-deleting theorem, 114
Noether’s theorem, 166
Non-local hidden variable theories, 71, 87
Norm, 24

Infinite-dimensional case, 154
Normal distribution, 51
Normal matrix, 40
Normalizing a vector, 27
NOT (X) gate, 97
NOT gate

Classical, 96
Quantum, 97

Number operator, 147

Observable, 57
Observable Axiom, 57
Occam’s razor, 107
Odd permutation, 68
Operator, 57

Operator anti-commutator, 68
Operator Axiom, 57
Operator commutator, 68, 88
Operator exponential, 132
OR gate, 96
Orthogonal, 26
Orthonormal basis, 25
Orthonormal eigenbasis, 38
Orthonormal vectors, 26
Outer product, 29
Outer product representation, 41

Path integral, 172
Path integral quantization, 162
Pauli matrices, 64
Permutation, 68
Phase space, 139
Photoelectric effect, 6
Photons, 6
Planck constant, 55
Planck length, 55
Planck units, 55
Planck’s law, 6
Poisson brackets, 140
Polar coordinates, 20
Polarization, 69
Position eigenstate, 150
Position operator, 150
Position-momentum uncertainty relation, 89
Positive-definite inner product, 25
Potential energy, 139
Power series, 128
Principle of stationary action, 163
Probability, 46
Probability amplitude, 58
Probability Axiom, 58
Probability density, 152
Probability distribution, 46
Projection, 60
Projective measurements, 100
Projector, 100
Promotion of operators, 143
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Quanta, 6
Quantization, 12, 139, 143

Canonical, 143
Path integral, 162

Quantum algorithm, 118
Quantum circuit, 118
Quantum computer, 12, 14, 69, 87, 97, 109, 114,

118
Quantum decoherence, 109
Quantum electromagnetic field, 11
Quantum entanglement, 14
Quantum excitation, 11
Quantum field theory, 11, 144, 150, 173
Quantum gate

CNOT, 98
Hadamard, 98, 119
NOT (X), 97
Z, 97

Quantum gravity, 12, 112, 139, 173
Quantum harmonic oscillator, 144
Quantum information, 112
Quantum logic gate, 97, 118
Quantum observable, 57
Quantum operator, 57
Quantum parallelism, 118
Quantum state, 56
Quantum system, 56
Quantum teleportation, 114
Quark, 144
Qubit, 69
Qubits, 12

Random variable, 45
Rank, 29
Ray in a Hilbert space, 56
Real n-vectors, 17
Real and imaginary parts of a complex num-

ber, 16, 17
Real interval, 153
Real numbers, 15
Realism, 85
Register

Data, 119
Target, 119

Representing a matrix in a basis, 40
Representing a vector in a basis, 32

Infinite-dimensional case, 152
Rotation matrix, 28

Scalar, 21
Scalar matrix, 35
Scattering, 161
Schrödinger equation, 133, 136
Separability problem, 81
Separable state, 79
Separation of variables, 160
Set of measure zero, 153
Shor’s algorithm, 127
Shut up and calculate, 105
Simultaneous diagonalization, 92
Single-slit experiment, 167
Singular matrix, 35
Span, 25
Spin, 12, 66
Spin singlet, 88
Spooky action at a distance, 87
Standard basis, 27
Standard deviation, 50
State, 56
State Axiom, 56
State collapse, 101
Stationary phase approximation, 173
Stationary point, 163
Stationary states, 160
Stern-Gerlach experiment, 11
Strong nuclear force, 144
Superposition, 13, 60

Meaning of, 70
System, 56
System Axiom, 56

Tensor power, 123
Tensor product, 72
atan2 (x, y), 20
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Time reversal, 137
Time reversal symmetry, 95, 138
Time shift, 137
Time-independent Hamiltonian, 136
Time-independent Schrödinger equation, 138
Time-ordered exponential, 137
Translation operator, 156
Tunneling, 161
Two-state system, 64

Ultraviolet catastrophe, 5
Uncertainty, 89
Uncertainty principle, 14, 89
Uniform probability distribution, 46
Unit scalar, 22
Unit vector, 26
Unitary evolution, 95
Unitary matrix, 39
Unitary transformation, 95

Vacuum, 69
Vacuum state, 150
Variance, 50
Vector space, 21

Wave-particle duality, 10
Wavefunction, 152
Wavefunction collapse, 104
Wick rotation, 174

X (NOT) gate, 97
XOR gate, 97

Z gate, 97
Zero vector, 22
Zero-point energy, 150
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