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* The spectral lines corresponding to an electron dropping to energy
level n = 2 in the hydrogen atom are called Balmer lines (or the
Balmer series).

* The red line on the right, with wavelength ~656 nm, corresponds
toadrop fromn = 3ton = 2.1tis called the Ha (H alpha) line.

* This line is responsible for the characteristic red glow in some
images of nebulae.

The Balmer series.
Credits: Jan Homann



The Orion Nebula in visible light. Note the red glow, indicating ionization due to hot stars nearby. The blue at the edges of some clouds is produced by dust that scatters the light of the stars.
Credits: NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team



https://voutu.be /tkWrirdT37Z


https://youtu.be/fkWrjrdT3Zg
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A remnant of a supernova ~11,000 years ago in the constellation Vela. We can still see the filaments from the explosion. The edges are colliding with interstellar gas and heating it.
Credits: Digitized Sky Survey, ESA/ESO/NASA FITS Liberator



The Crab Nebula is a supernova remnant in the constellation Taurus.
Credits: NASA, ESA, J. Hester and A. Loll (Arizona State University)
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The dark nebula Barnard 68. It has a temperature of ~16 K, mass of 2 M, and diameter of ~1/2 light-year.
Credits: ESO



The Milky Way as seen by Gaia, with prominent dark features labeled in white, and prominent star clouds labeled in black.
Credits: Nsae Comp (Wikipedia)






The Horsehead Nebula in the constellation Orion is an extension of a large dust cloud. It is dark in visible light (left) but bright in infrared (right).
Credits left: modification of work by ESO and Digitized Sky Survey, right: modification of work by NASA/JPL-Caltech)
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The Pleiades (PLY-a-deez) star cluster is surrounded by a reflection nebula, which scatters blue light from the stars in the cluster.
Credits: NASA, ESA, AURA/Caltech, Palomar Observatory



The reflection nebula NGC 1999 reflects the light of the variable star V3t
Credits: NASA and The Hubble Heritage Team (STScl) P &t
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Scattering of blue and red light by a dust cloud.
Credits: OpenStax Astronomy



The dark nebula Barnard 68 in infrared. We can see that although visible light does not pass through due to extinction, infrared light, which has a longer wavelength, does pass through.
Credits: ESO
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In this computer simulation of the Milky Way's interstellar medium, we see neutral hydrogen in green, giant molecular clouds in yellow, and low-density “holes” due to supernovae in blue.
Credits: modification of work by Mark Krumholz
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The N70 Nebula is a superbubble in the Large Magellénic Cloud (a satellite galaxy to the Milky Way). Tﬁis superbubble is ~300“1ight-years in diameter and located ~160,000 light-years away.
Credits: ESO



LLocal Bubble



Artist's illustration of the Local Bubble, with star formation occurring on the bubble's surface. The names indicate which constellation each star-forming region is located in.
Credits: Leah Hustak (STScI)
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The Local Interstellar Cloud, with arrows indicating cloud motion. The name next to each arrow indicates the constellation in the direction of the arrow.
Credits: NASA/Goddard/Adler/U. Chicago/Wesleyan
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A filament in the Taurus Molecular Cloud, more than 10 light-years long.
Credits: ESO/APEX (MPIfR/ESO/0SO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin.
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* Gravity inward collapse
* Pressure outward expand
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Artist’s conception of a protostar. Note the disk around the equator and the jets emanating from the poles.
Credits: NASA/JPL-Caltech/R. Hurt (SSC)



Herbig-Haro (HH) objects



Herbig-Haro objects HH 1 (upper right) and HH 2 (bottom left), created by a new star system hidden behind thick clouds of dust at the center, ~1,250 light-years from Earth.
Credits: NASA/ESA



This Hubble Space Telescope video shows material in Herbig-Haro object HH 47 moving away from the source star, hidden on the left, over a period of 14 years, from 1994 to 2008.
Credits: NASA, ESA, P. Hartigan (Rice University), G. Bacon (STScl), video available at https://voutu.be/Knc 2ip2uDw



https://youtu.be/Knc_2ip2uDw




Infrared images of disks around young stars in the constellation Taurus, ~450 light-years away. In some cases we can see the central star(s), but in other cases the dust disks are too thick.
Credits: modification of work by D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA



Hertzsprung-Russell (H-R)
diagram
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Evolutionary tracks for contracting protostars of different masses, indicating the protostar’s age at each stage. Note that more massive stars evolve faster.
Credits: OpenStax Astronomy

Stars above the
dashed line are
typically still
surrounded by
infalling material
and hidden by it

at this stage.
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Zero-age main sequence



Evolutionary tracks for contracting protostars (same plot from before, just to review).
Credits: OpenStax Astronomy












Surface Lifetime on Main
Typ M
>pectral Type Temperature (K) Mass (Mo) Sequence (years)

05 54,000 40 1 million
BO 29,200 16 10 million
A0 9600 3.3 500 million
FO 7350 1.7 2.7 billion
GO 6050 1.1 9 billion
KO 5240 0.8 14 billion

MO 3750 0.4 200 billion
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Size of the Sun as it is now compared to the size it will have as a red giant.
Credits: Oona Raisanen



Evolutionary tracks for stars of different masses from main sequence to red giant/supergiant, indicating the star’s age at each stage. Again, more massive stars evolve faster.
Credits: OpenStax Astronomy
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In the triple-alpha process, 3 helium nuclei are fused into 1 carbon nucleus. We start and end with 6 protons and 6 neutrons, but in the end they are all fused into the same nucleus.
Credits: Borb (Wikipedia)



e We are “made of star stuff”
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The onion-like structure of a star near the end of its life.
Credits: OpenStax Astronomy



helium shell
flashes



(a) Evolution from main sequence to
red giant (hydrogen fusion in shell,
notin core)

(b) Helium flash (helium fusion begins,
star contracts)

(c) Helium fusion (brief period of
stability)

(d) Helium core exhausted (star
becomes red giant again)

Evolution of a star with the same mass as the Sun.
Credits: OpenStax Astronomy



Time in This Surface
R
e ey Tomponte g mInOs (1) Padivs (Ro)

Main sequence 11 billion 6000
Becomes red giant 1.3 billion 3100 at minimum 2300 at maximum 165
Helium fusion 100 million 4800 50 10

Giant again 20 million 3100 5200 180









planetary nebula



Hubble images of NGC 6543, a planetary nebula also known as the Cat's Eye Nebula. Left: X-ray/optical composite, right: enhanced image showing concentric rings of ejected material.
Credits: Left: NASA / X-ray: Y. Chu (UIUC) et al., Optical: J. P. Harrington, K. J. Borkowski (UMD), Composite: Z. Levay (STScl), right: NASA, ESA, HEIC, Hubble Heritage Team (STScI/AURA)



The Cat's Eye Nebula (in the middle) is surrounded by a much larger halo of gas, ~3 light-years across, likely ejected in earlier stages of the star’s evolution, ~50,000-90,000 years ago.
Credits: Nordic Optical Telescope and Romano Corradi (Isaac Newton Group of Telescopes, Spain)



James Webb Space Telescope images of NGC 3132, a planetary nebula also known as the Southern Ring Nebula. Left: near-infrared (wavelength 0.6-5 um), right: mid-infrared (5-28 um).
Credits: NASA, ESA, CSA, and STScl



NGC 7293, a planetary nebula also known as the Helix Nebula. Left: visible light (Hubble), right: infrared (Spitzer).
Credits: Left: NASA, ESA, and C.R. O'Dell (Vanderbilt University), right: NASA/JPL-Caltech/Univ. of Ariz.
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The interior structure of a massive star just before it exhausts its nuclear fuel. Shells closer to the core fuse heavier elements. The iron in the core cannot be fused to generate energy.
Credits: OpenStax Astronomy



stellar nucleosynthesis



https://voutu.be/mY2edzGYWvyU


https://youtu.be/mY2edzGYWyU

https://starinabox.lco.global


https://starinabox.lco.global/
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