ASTR 1P01

Video

A comparison of the sizes of different celestial bodies.

The video is available at this URL:

Lecture 2:

Goals

- Understand how astronomers describe the sky.
- Learn about constellations.
- Discuss the major celestial bodies seen with the naked eye.

The celestial sphere

The horizon

- Since the dome is round, the horizon is a circle.
- But we almost never see the full circle, because it is behind buildings or mountains, or there is poor visibility.

The celestial poles

- Imagine a line going through the Earth; connecting the north and south poles.
- This is the axis of rotation of the Earth.
- If we extend this line until it meets the celestial sphere, the points of intersection are called the north celestial pole and the south celestial polé:

Looking down from the north celestial pole, the Earth rotates counterclockwise.

The rotation of the Earth

- The Earth completes a full rotation approximately every 24 hours.
- This rotation is responsible for the rising and setting of the Sun; Moon, and stars.
- All of them rise in the east and set in the west.
- That means the Earth rotates in the opposite direction - from west to east:

Latitude \& longitude

Angles

- There are 360° in a circle.
- Half a circle is 180°. For example: the celestial dome.
- A quarter of a circle is 90°. For example: between pole and equator.

Latitude and longitude

- The latitude of a point on Earth's surface is the angle it makes with the equator, either to the north or to the south.
- The latitude of the equator itself is 0°.
- The latitude of the north pole is $90^{\circ} \mathrm{N}$.
- The latitude of the south pole is $90^{\circ} \mathrm{S}$.

Latitude and longitude

- The longitude of a point on Earth's surface is the angle it makes with the prime meridian, which is a line stretching from pole to pole and passing through the Royal Observatory in Greenwich, England.
- The prime meridian itself has a longitude of 0°.
- Theressnothing special about the Royal Observatory, it was only chosen for historical reasons.

Latitude and longitude

- To remember the difference between latitude and longitude, notice that if you switch the first two letters of "latitude", you get "altitude", which is another word for "height".
- Maps of the Earth always have north on top, so the latitude tells you the "height" along this map.

At latitude $90^{\circ} \mathrm{N}$, the north celestial pole is at your zenith, and the celestial equator is at your horizon.

You can only see half of the sky, and always the same stars.

North
celestial

The stars don't rise or set, they just circle around the pole.

At North Pole

 exposure was used, to capture the paths of the stars in the sky.The center of these circles is the south celestial pole.

At latitude 0°, the celestial equator passes through your zenith, and the celestial poles are on your horizon.
(Or at least, you would see them if the Sun wasn't in the way during daytime.)

North celestial

Over a 24-hour period, you will see all the stars in the sky rising in the east and setting in the west.

Patterns in the sky

- On a perfect night, with no clouds or artificial light, it is possible to see about 3,000 stars with the naked eye.
- The positions of these stars are random, but humans love to find patterns in things, so ancient cultures gave names to specific geometric patterns that were particularly noticeable.
- These, oftterns of stars are called asterisms.

Note; they are NóTcalied constellations! We'll define constellations later.

- Tdentifying these patterns is a bit like solving a celestial connect-the-dots puzzle.

Patterns in the sky

- Historically, these patterns were helpful in navigation, because before we had GPS, they allowed people to orient themselves at. night.
- Here are some examples of asterisms you may already be familiar with, or perhaps you saw but didn't know they had names.

The Big Dipper consists of 7 bright stars that look a bit like a bowl with a handle.

The Little Dipper / Ursa Minor / Little

Bear is similar in shape but smaller in size.

The very bright star at the end of the handle is Polaris, the North Star, which is very close to the north celestial pole.

Regions in the sky

- In modern times, astronomers divide the celestial sphere into 88 regions, called constellations.
- These regions cover the entire sphere, so any point in the sky is located in exactly one of the constellations.
- Each constéllation contains one or more prominent asterisms, and they get their names from various animals, objects, and mythological chafacters on creatures.

Historical origins

- Many of these constellations originated as early as 5,000 years ago in ancient Mesopotamia.
- This is the historical region where Iraq is located today.
- The civilizations of that area include the Sumerians and the Babylonians 絍体,
- The andient Greeks adopted the Babylonian constellations around 3. 400 BC .
- The ancient astronomer Ptolemy described 48 of the 88 modern constellations in his influential book Almagest around the year 150.

Historical origins

- The Greeks could not see the entire sky, since they never saw any stars from the south circumpolar zone.
- When European explorers began traveling to the southern hemisphere, in the 15th century, they gradually added new constellations that can only be seen in the southern sky.
- The modern list of 88 constellations along with their boundaries, which cover the entire celestial sphere, was adopted by the Thternational Astrononical Union in 1928.

Asterism vs. constellation

- "Constellation" means a region in the sky.
- "Asterism" means a specific pattern of stars.
- However, each constellation has one or more defining patterns within its region, sometimes referred to colloquially as "the constellation
- The liternational Astronomical Union only defined the regions of 3 each constellations? they didn't define how to connect the stars.

The Big Dipper is the tail and lower body of BERENGES. the bear (on the left):

Computer simulation

Let us explore some constellations and asterisms using Stellarium.

It is available at this URL:
https://stellarium.org/

The stars in 3 dimensions

- The sky looks like a 2-dimensional sphere, the celestial sphere, with the stars located on the sphere itself.
- Some ancient civilizations thought that this was an actual sphere rotating around the Earth.
- In reality, it'sthe Earth that's rotating.
- Môre importantly, the stars are not located on a 2-dimensional

Sphere they are distributed in 3 dimensions all over the galaxy.

The stars in 3 dimensions

- Our sky, with its specific patterns of stars like Orion or the Big Dipper, is unique to us.
- Aliens on a distant planet, many light-years away, will see a completely different sky with different patterns of stars.
- They will seé the same 3-dimensional distribution of stars from a differegt location in the galaxy.

The stars in 3 dimensions

- Stars that seem to be close together in our 2D sky might be very far apart in the actual 3D space.
- If two stars happen to both be in the same direction as seen from Earth, they will appear close together in the sky, even if in reality they are many light-years away from each other.

Alnilam is 2,000 lightyears from us. So it's: not actually close to the other two!

Video

Let us see how Orion looks like from different places in the galaxy.

The video is available at this URL:
https://youtu.be/ID-5ZOipE48.

The movement of the stars

- The stars are not fixed in place. Each star has its own independent motion in 3D. Different stars move in different speeds and directions.
- Over tens of thousands of years, the patterns that we recognize now in the sky may not exist anymore.
- For example, one star in a constellation may move north while anothér one movés east.
- Prahistoric humanswho lived hundreds of thousands of years ago saw a different sky!

Video

Let us see how Orion looks like from Earth at different points in time.

The video is available at this URL:
https://youtu.be/sNqV:RzjTSFg

Observing constellations

- Next time you're far away from the city lights at night, take a look at the sky and try to find all the constellations that I mentioned today!
- The course website has links to apps that you can install on your phone for free and will show you the location of the constellations when you point your phone towards the sky.

The Sun

- There is one particular star that is the closest to Earth by far. This star is called the Sun.
- While the other stars are many light-years away, the Sun is only about 8.3 light-minutes away.
- We call that distance an astronomical unit (denoted by AU), and it is equalto around 150 million km .

The Sun

- Since the Sun is so much closer to us than the other stars, it also appears much larger and brighter.
- This doesn't mean it's actually larger or brighter than the other stars.
- Since those stars are so far away, we only see them as tiny dots in the sky
\%. But if'we put onef these stars in real size next to the Sun, the other star could turn out o be much larger and/or brighter.

The Sun

- The Sun is so bright that you can get serious eye damage just by looking directly at it for a few seconds!
- During daytime, when the Sun is in the sky, we cannot see any other stars in the sky, because they're just not bright enough compared to the immense brightness of the Sun.
- This is why we can only see the stars during the night, or during a solar éclipse.
- The Sun is also bright enough to turn the color of the sky from black to blue; we'll learn' hew that works later.

The Earth's rotation

- The Earth rotates:

1. Around its own axis,
2. Around the Sun.

- A day is the period during which the Earth completes one rotation around its axis, around 24 hours.
- A year) 1 the time it takes the Earth to complete a full revolution around the Sun, arqund 365 days.

- The plane of Earth's rotation around the Sun is the ecliptic.
- The line perpendicular to the ecliptic intersects the celestial sphere at the ecliptic poles.
- The plane of Earth's rotation around its axis intersects the celestial sphere at the celestial equator.
- The two planes of rotation differ by an axial tilt of 23.4°.
- The two intersections of the ecliptic and the celestial equator are called equinoxes.
- The Sun is at the equinoxes around March 20 and September 23.

The Sun appears to move along the sky

Cancer Gemini
during the year (but

Sun

Libra

Ophiuchus

Capricornus
This means there are different constellations behind the Sun on different times.

The Sun's path in the sky

- In total, there are 13 constellations on the ecliptic.
- The Sun appears to move in a circle eastward, and comes back to its original spot after exactly a year.
- There are 360° in a circle, and around 365 days in a year, so the Sun appears tómove $\sim 1^{\circ}$ per day.

Other celestial bodies in the sky

- With the naked eye, we can see 5 planets:
- Mercury
- Venus
- Mars
- Jupiter
- Saturn
- The Sun the Moon, and these. 5 planets were known in ancient Greece as

"The wor̂d "planet"Means wanderer" in ancient Greek. These 7 objects seem to wander around the sky, while the stars stay in place.
- However, in modern terminology, the word "planet" only applies to large objects that orbit the Sun.

Other celestial bodies in the sky

- The Sun follows the ecliptic on the celestial sphere.
- The paths of the Moon and the planets are close to the ecliptic, but not exactly on it.
- The orbits of the planets around the Sun, and of the Moon around Earth, all lie on their own planes, but these planes turn out to be very clóse to the ecliptic plane.

Other celestial bodies in the sky

- The Sun, Moon, and planets are always within 8-9. ${ }^{\circ}$ north or south of the ecliptic:
- This "belt" is called the zodiac.
- "Zodiac" means "circle of animals". Many of the 13 constellations on the zodiactare named after animals.

Conclusions

- This lecture focused on things that can be seen with the naked eye: stars, asterisms, and constellations.
- We also learned about many imaginary points and lines in the sky, such as the zenith, celestial poles, ecliptic, equinoxes, and so on.
- Reading: OpenStax astronomy, section 2.1.

Exercises: Practioce questions are available in the textbook and on the course website.

