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15. Thermodynamics



15.1 The First Law of 

Thermodynamics



The First Law of Thermodynamics

• Closed system, can exchange heat and work but not matter.
Δ𝑈 = 𝑄 − 𝑊

• 𝑈 = internal energy.

• Δ𝑈 = change in internal energy.

• 𝑄 = net heat transferred into the system.

• 𝑄 ≡ 𝑄in − 𝑄out

• 𝑊 = net work done by the system.

• 𝑊 ≡ 𝑊by − 𝑊on

• Just conservation of energy...



Note: The 2nd edition of the textbook uses Δ𝐸int instead of Δ𝑈. 
However, the correct notation is Δ𝑈.





15.2 The First Law of 

Thermodynamics and 

Some Simple Processes



Schematic 
representation of a 
heat engine.

It is impossible to 
devise a system 
where 𝑄out = 0.



Heat transfer to the 
gas in a cylinder 
increases the 
internal energy of 
the gas, creating 
higher pressure and 
temperature.



The force exerted on the 
cylinder does work.

Gas pressure and 
temperature decrease 
when it expands.

The gas’s internal energy 
has been decreased by 
doing work.



Heat transfer to the 
environment further 
reduces pressure in 
the gas so that the 
piston can be more 
easily returned to its 
starting position.



An isobaric (constant 
pressure) expansion of a 
gas requires heat 
transfer to keep the 
pressure constant.



A 𝑃𝑉 diagram for an 
isobaric process. The 
area under the curve 
equals the work done 
by the gas.



If the pressure is not 
constant, we need to 
use calculus to 
calculate the total 
area under the 
curve using an 
integral.



If the path is from 
right to left, the 
work is negative.



The horizontal lines are 
isobaric: constant pressure.

The vertical lines are 
isochoric: constant volume.

The work done in going from 
A to C depends on the path.

𝑊𝐴𝐵𝐶 > 𝑊𝐴𝐷𝐶  because ABC is 
at higher pressure.



The total work done in the 
cyclical process ABCDA is 
the area inside the loop.

The negative area below 
CD cancels out.



The area inside any closed 
loop is the work done in the 
cyclical process.

If the loop is clockwise, 𝑊 is 
positive = work done on the 
outside environment.

If the loop is counter-
clockwise, 𝑊 is negative = 
work done to the system.



The upper curve is an isothermal process 
(Δ𝑇 = 0 or constant 𝑇). The lower curve is 
an adiabatic process (𝑄 = 0).

For the isothermal process:

𝑈 = 𝑁 ⋅
1

2
𝑚 ҧ𝑣2 =

3

2
𝑁𝑘𝐵𝑇

So if 𝑇 is constant:
Δ𝑈 = 𝑄 − 𝑊 = 0 ⟹  𝑄 = 𝑊

The adiabatic process converts some 
internal energy to work (Δ𝑈 = −𝑊), so 𝑇 
must decrease, therefore 𝑃 also decreases 
(𝑃𝑉 = 𝑁𝑘𝐵𝑇). The isothermal process 
does more work.



The cycle ABCA produces a net 
work output.



Term Meaning Defining Eq. Work

Isobaric

Isochoric

Isothermal

Adiabatic

Pop Quiz:



Term Meaning Defining Eq. Work

Isobaric Constant pressure Δ𝑃 = 0 𝑊 = 𝑃Δ𝑉

Isochoric Constant volume Δ𝑉 = 0 𝑊 = 0

Isothermal Constant temperature Δ𝑇 = Δ𝑈 = 0 𝑊 = 𝑄

Adiabatic No heat transfer 𝑄 = 0 𝑊 = −Δ𝑈

Answers:



15.3 Heat Engines and 

Their Efficiency



Examples of irreversible (1-way) 
processes:

a. Heat transfer: hot ⟹ cold.

b. Brakes: kinetic energy ⟹ heat.

c. Gas expands to fill a container.



The Second Law of 
Thermodynamics

(first version)
Heat flows spontaneously from a hot 

system to a cold system, but not in the 
other direction.



• Top (𝑇h): Hot reservoir (𝑇h > 𝑇c).

• Bottom (𝑇c): Cold reservoir.

• Left: 2nd law of thermodynamics, 
heat flows from hot to cold.

• Right: Heat engine (circle) uses part 
of the heat transfer to do work 𝑊.

• 𝑄h = heat transfer out of the hot 
reservoir.

• 𝑄c = heat transfer into the cold 
reservoir.



The Second Law of 
Thermodynamics
(second version)

Heat engines are not perfect.

That is, heat cannot be completely 

converted to work in a cyclical process.



• Efficiency 𝜂 (Greek eta) = ratio of work 

output to energy input:

𝜂 ≡
𝑊

𝑄h
=

𝑄h − 𝑄c

𝑄h
= 1 −

𝑄c

𝑄h

• 𝜂 = 1 = 100% if 𝑄c = 0 (or 𝑄h = ∞).

• But we will prove soon that this is not possible.



• Otto cycle: an idealized thermodynamic 
cycle that describes the functioning of 
engines like the four-stroke internal 
combustion engine.

• Step 1: Air is mixed with fuel during the 
intake stroke.



• Step 2: During the compression stroke, 
the air-fuel mixture is rapidly 
compressed in a nearly adiabatic 
process, as the piston rises with the 
valves closed. Work is done on the gas.



• Step 3: The power stroke has two distinct 
parts.

• First, the air-fuel mixture is ignited, 
converting chemical potential energy 
into thermal energy, increasing pressure.

• Then the piston descends, and the gas 
does work by exerting a force through a 
distance in a nearly adiabatic process.



• Step 4: The exhaust stroke expels the hot 
gas to prepare for another cycle.



https://youtu.be/Pu7g3uIG6Zo

https://youtu.be/Pu7g3uIG6Zo


Compression

PowerIgnition

Exhaust



CD starts at higher 𝑇
AB starts at lower 𝑇
Result: more work output

W’ > W



15.4 Carnot’s Perfect Heat 

Engine: The Second Law of 

Thermodynamics Restated



The drinking bird: “perpetual motion”?
• Head gets wet

• Water evaporates

• Head cools

• Pressure lowers in head

• Fluid rises

• Center of gravity changes

• Bird tips forward

• Pressure equalizes

• Fluid flows back down

• Bird tips back up

• Repeat…

https://youtu.be/UCKC-QVcVn0

https://youtu.be/UCKC-QVcVn0


• Recall the definition of efficiency 𝜂:

𝜂 ≡
𝑊

𝑄h
=

𝑄h − 𝑄c

𝑄h
= 1 −

𝑄c

𝑄h

• 𝜂 = 1 = 100% if 𝑄c = 0 (or 𝑄h = ∞).

• Cannot be achieved.

• What is the maximum possible 

efficiency?

• Carnot cycle: the most efficient (cyclical) 

process possible. Theoretical only.

• Carnot engine: an engine using the 

Carnot cycle.



The Second Law of 
Thermodynamics

(first version)
Heat flows spontaneously from a hot 

system to a cold system, but not in the 
other direction.



The Second Law of 
Thermodynamics
(second version)

Heat engines are not perfect.

That is, heat cannot be completely 

converted to work in a cyclical process.



The Second Law of 
Thermodynamics

(third version)
The maximum possible efficiency 

of any reversible heat engine is 

that of the Carnot engine.



𝑃𝑉 diagram for the Carnot cycle.
Only uses reversible isothermal and adiabatic processes.
Explanations in the next slides.



AB: Heat transferred from hot reservoir to the gas. Gas 
temperature stays constant, but it expands and does work.



BC: No heat transfer, gas continues to expand and do work 
while cooling down.



CD: Heat transferred from gas to the cold reservoir. Gas 
temperature stays constant, but it compresses and work is done 
on it by the surroundings.



DA: No heat transfer, gas continues to compress and work is 
done on it while heating up.



• In a Carnot engine:

𝑄c

𝑄h
=

𝑇c

𝑇h
 ⇒  𝜂 = 1 −

𝑄c

𝑄h
= 1 −

𝑇c

𝑇h

 (𝑇 is absolute temperature!)

• 𝜂 = 1 = 100% if 𝑇c = 0 (or 𝑇h = ∞)

• Neither option is realistically possible, 

therefore 𝜂 < 1 in practice.

• To maximize:

• 𝑇c should be as small as possible, and/or

• 𝑇h should be as large as possible.



Real heat engines are less 
efficient than Carnot engines.

Solid = actual (irreversible, 
practical)

Dashed = Carnot (reversible, 
theoretical)



(Skipping section 15.5)



15.6 Entropy and the 

Second Law of 

Thermodynamics



• Colloquial definition: entropy is a measure of (microscopic) disorder.

• Ice: low entropy, molecules organized in lattice.

• Water: high entropy, molecules disorganized and free to move.

• Melting a block of ice increases entropy.

https://youtu.be/FYgiZ7KzgD
k

https://youtu.be/3xaZwbKyYdM

https://youtu.be/FYgiZ7KzgDk
https://youtu.be/FYgiZ7KzgDk
https://youtu.be/3xaZwbKyYdM


The Second Law of 
Thermodynamics

(final version)
The total entropy of a system never decreases.

It is constant for reversible processes, and 

increases for irreversible processes.



Precise definition of entropy

• For Carnot cycle (or any reversible process):

𝑄c

𝑄h
=

𝑇c

𝑇h

Therefore

𝑄c

𝑇c
=

𝑄h

𝑇h

We define the ratio on both sides as the change in entropy:

Δ𝑆 ≡
𝑄

𝑇

Remember that 𝑄 ≡ 𝑄in − 𝑄out .



Units of entropy

Δ𝑆 ≡
𝑄

𝑇

Pop Quiz: What are the units of entropy?

Answer:

𝑄 = J

𝑇 = K

Therefore:

𝑆 =
J

K
 or J ⋅ K−1



Some calculus
(not required for the course)

The precise relation between heat 𝑄, 
temperature 𝑇, and entropy 𝑆 is

𝑄 = න
𝐴

𝐵

𝑇 d𝑆

This is the area under the curve in a 𝑇𝑆 diagram.

If we just use average 𝑇 and finite Δ𝑆 then

we get 𝑄 = 𝑇Δ𝑆, so

Δ𝑆 =
𝑄

𝑇



Δ𝑆 for a reversible process
Hot reservoir loses entropy: (negative, heat is flowing out of it)

Δ𝑆h = −
𝑄h

𝑇h

Cold reservoir gains entropy: (positive, heat is flowing into it)

Δ𝑆c = +
𝑄c

𝑇c

In total:

Δ𝑆total = Δ𝑆h + Δ𝑆c = −
𝑄h

𝑇h
+

𝑄c

𝑇c
= 0

Because

𝑄c

𝑇c
=

𝑄h

𝑇h

So total entropy doesn’t change in a reversible process.



Examples of irreversible processes
• Heat transfer from hot to cold.

• Friction.

• Gas expanding to fill a container (see below).

• Mixing two fluids.

• Glass breaking.

• Any process that takes place spontaneously without doing work.



Can glass be spontaneously unbroken?

• We intuitively know when 

the video is played in 

reverse.

• Newton’s laws, relativity, 

and quantum mechanics 

are not broken in the 

reverse process!

• Only the 2nd law of 

thermodynamics is 

broken, since entropy 

decreases.
https://youtu.be/aUawzNrw8S0

https://youtu.be/aUawzNrw8S0


The arrow of time

Open problem in physics:

• Microscopic processes are time-
reversible, macroscopic 
processes are not.

• But any macroscopic process is 
made of small microscopic ones.

• How to reconcile this?

Another problem:

• Time advances in the direction 
of increasing entropy.

• Other arrows of time exist, e.g. 
cosmological.

• Are they related?



Δ𝑆 for an irreversible process

• Entropy depends only on the state of the 
system, no matter how it got to that 
state.

• So Δ𝑆 between two states 1 and 2 is the 
same no matter how the system got from 
1 to 2.

• To find Δ𝑆 for an irreversible process, 
find a hypothetical reversible process 
between the same states, and calculate 
Δ𝑆 = 𝑄/𝑇.



Example

• Irreversible process: spontaneous 

heat transfer from hot to cold.

• Instead consider two reversible 

processes with equivalent result:

Δ𝑆h = −
𝑄h

𝑇h
, Δ𝑆c =

𝑄c

𝑇c

Δ𝑆tot = Δ𝑆h + Δ𝑆c = −
𝑄h

𝑇h
+

𝑄c

𝑇c



Class Problem: Calculate the total change in entropy in heat transfer with:

𝑄h = 𝑄c ≈ 4000 J

𝑇h ≈ 600 K, 𝑇c ≈ 250 K

Did entropy increase, decrease, or stay the same? Why?

Solution:

Δ𝑆tot = −
𝑄h

𝑇h
+

𝑄c

𝑇c

≈ −
4000 J 

600 K 
+

4000 J

250 K 
= 9.33 J/K

The 2nd law of thermodynamics: entropy always increases for irreversible 

processes!



Entropy and unavailability of energy for work

• There is 933 J 
less work from 
the same heat 
transfer in the 
process with 
the higher 
entropy.

• General result:
𝑊unavail = 𝑇cΔ𝑆

𝜂 = 1 −
100

600
= 0.833 𝜂 = 1 −

100

250
= 0.600

= 𝜂𝑄h

9.33 J/K



Heat death of the universe: the “Big Freeze”
• Early universe was homogenous.

• Lowest entropy, largest amount of energy 
available to do work.

• With time, temperature differences 
arose.
• E.g.: stars > planets > asteroids > vacuum.

• Temperature differences = heat engine = 
work.

• Stars and planets have their own energy, 
but in finite amounts.

• As time passes, by the 2nd law, entropy 
increases.
• Less and less energy available to do work.

• When fuels on Earth (fossil, nuclear, wind, 
geothermal, tidal…) are used, some of the 
energy becomes permanently unavailable.

• The Sun will die in 5 billion years.

• In the very very far future (~10100 
years)…
• All stars will die.

• All temperatures will equalize.

• Maximum entropy will be reached.

• No heat engines possible, no more work 
can be done.

• All activity will cease.

(This is just one possible scenario!)



2nd law of thermodynamics and evolution

• A common (but incorrect) argument against evolution: when complex life 
forms evolves from simple ones, entropy decreases.

• The 2nd law only says that the total entropy cannot decrease. The entropy of a 
particular system can decrease if the entropy of another increases.

• Entropy can be decreased by putting energy into the system.
• Example: a glass cannot spontaneously unbreak itself, but I can use energy (work) to pick 

up the pieces and glue them together, decreasing entropy.

• The entropy on Earth can decrease because it absorbs energy from the Sun. 
The overall entropy of the solar system will increase.



Mathematical interlude: 

logarithms



Exponentiation



Definition

• Positive integer exponent (𝑏 = base):

𝑏𝑛 ≡ 𝑏 × ⋯ × 𝑏
𝑛 times

Example:

24 = 2 × 2 × 2 × 2 = 16

• Zero exponent:

𝑏0 ≡ 1



Definition

• Negative integer exponent:

𝑏−𝑛 ≡
1

𝑏𝑛

Example:

5−2 =
1

52
=

1

5 × 5
=

1

25



Definition

• Unit fraction exponent:

𝑏1/𝑛 ≡
𝑛

𝑏

Example:

271/3 =
3

27 = 3

• Rational exponent:

𝑏𝑚/𝑛 ≡
𝑛

𝑏𝑚

Example:

82/3 =
3

82 =
3

64 = 4



Identities

• Sum becomes product:
𝑏𝑚+𝑛 = 𝑏𝑚 ⋅ 𝑏𝑛

• Difference becomes quotient:

𝑏𝑚−𝑛 =
𝑏𝑚

𝑏𝑛

• Product becomes power:
𝑏𝑚𝑛 = 𝑏𝑚 𝑛

• Exponentiation “increases the level of the operation”:
+ ⇒ × ⇒  ∎∎



Logarithms



Definition

• Some examples of inverse functions:

𝑥2  ⟺  𝑥  ⟶  𝑥2 = 𝑥 2 = 𝑥

sin 𝑥  ⟺  arcsin 𝑥  ⟶  arcsin sin 𝑥 = sin arcsin 𝑥 = 𝑥

1

𝑥
 ⟺  

1

𝑥
 ⟶  

1

1/𝑥
= 𝑥



Definition

• The logarithm is the inverse function of exponentiation:

𝑏𝑦 = 𝑥 ⟺  log𝑏 𝑥 = 𝑦

• Logarithm cancels exponential:

log𝑏 𝑏𝑥 = 𝑏log𝑏 𝑥 = 𝑥

• log𝑏 𝑥 means “to what power should I raise 𝑏 to get 𝑥?”

• Example: log10 100 means “to what power should I raise 10 to get 100?”, and 

the answer is 2.



Choice of base 𝑏

• 𝑏 = 2 (binary logarithm) in computer science, information theory, 

etc.

• Example: log2 16 = 4 because 16 = 24.

• 𝑏 = e ≈ 2.718. . . (natural logarithm) in math, statistics, physics, 

chemistry, engineering, etc.

• Special notation: ln 𝑥 ≡ loge 𝑥.

• Example: ln 7 ≈ 1.946 because e1.946 ≈ 7.



Choice of base 𝑏

• 𝑏 = 10 (decimal logarithm) in specific cases (e.g. decibels), 

historically was more useful due to logarithm tables.

• Example: log10 1000 = 3 because 103 = 1000.

• log 𝑥 with no base: usually inferred from context.

• Example: log 𝑥 in physics is probably loge 𝑥, in computer science it’s 

probably log2 𝑥.



Plots and 
useful values

For any 𝑏:
log𝑏 1 = 0

Because 𝑏0 = 1.

log𝑏 𝑏 = 1

Because 𝑏1 = 𝑏.

log𝑏 0 → −∞

Because 𝑏−∞ → 0 (for 𝑏 > 1).



Useful identities

• Exponentiation turns sum to product:
𝑏𝑚+𝑛 = 𝑏𝑚𝑏𝑛

So logarithm (the inverse) turns product to sum:
log𝑏 𝑥𝑦 = log𝑏 𝑥 + log𝑏 𝑦

• Exponentiation turns difference to quotient:

𝑏𝑚−𝑛 =
𝑏𝑚

𝑏𝑛

So logarithm turns quotient to difference:

log𝑏

𝑥

𝑦
= log𝑏 𝑥 − log𝑏 𝑦



Useful identities

• Exponentiation turns product to power:
𝑏𝑚𝑛 = 𝑏𝑚 𝑛

So logarithm turns power to product:
log𝑏 𝑥𝑦 = 𝑦 log𝑏 𝑥

(powers “move behind the log”)

• Exponentiation “increases the level of the operation”:
+ ⇒ × ⇒  ∎∎

So logarithm “decreases the level of the operation”:
∎∎  ⇒ × ⇒  +

(Exercise: prove all the logarithm identities from the exponentiation identities!)



Class exercises



Exercise 1

log4 16 = ?

Answer: 16 = 42, so log4 16 = 2.



Exercise 2

log5 125 = ?

Answer: 125 = 53, so log5 125 = 3.



Exercise 3

log4

1

16
= ?

Answer: 
1

16
= 4−2, so log4

1

16
= −2.



Exercise 4

log1
5

125 = ?

Answer: 125 = 53 =
1

5

−3
so log1

5

125 = −3.



Exercise 5

log10 0.0001 = ?

Answer: 0.0001 = 10−4 so log10 0.0001 = −4.



Exercise 6

log3 27 ⋅ 9 = ?

Answer: log3 27 ⋅ 9 = log3 27 + log3 9 = 3 + 2 = 5.



Exercise 7

log2

32

128
= ?

Answer: log2
32

128
= log2 32 − log2 128 = 5 − 7 = −2.



Exercise 8

log3 95 = ?

Answer: log3 95 = 5 log3 9 = 5 ⋅ 2 = 10.



15.7 Statistical 

Interpretation of Entropy 

and the Second Law



Probability of coin tosses (5 coins)

Macrostates Microstates
# of

microstates

5 heads, 0 tails HHHHH 1

4 heads, 1 tails HHHHT, HHHTH, HHTHH, HTHHH, THHHH 5

3 heads, 2 tails HTHTH, THTHH, HTHHT, THHTH, THHHT HTHTH, THTHH, HTHHT, THHTH, THHHT 10

2 heads, 3 tails TTTHH, TTHHT, THHTT, HHTTT, TTHTH, THTHT, HTHTT, THTTH, HTTHT, HTTTH 10

1 heads, 4 tails TTTTH, TTTHT, TTHTT, THTTT, HTTTT 5

0 heads, 5 tails TTTTT 1

Total: 32

Highest entropy states have the highest probability.



Probability of coin tosses (100 coins)

(Some) macrostates # of microstates

100 H 1

99 H, 1 T 100

95 H, 5 T 7.5 × 107

90 H, 10 T 1.7 × 1013

75 H, 25 T 2.4 × 1023

60 H, 40 T 1.4 × 1028

55 H, 45 T 6.1 × 1028

51 H, 49 T 9.9 × 1028

50 H, 50 T 1.0 × 1029

Total: 1.3 × 1030

It becomes essentially, but not completely, 
impossible to get a low-entropy state.

The 2nd law of thermodynamics is actually 
probabilistic: entropy can decrease, but it’s 
extremely unlikely.

If you toss a coin once per second, you will 
expect to get 100 heads once in 1022 years.

Now imagine tossing 1 mol ≈ 6 × 1023 coins…



• Ordinary state of gas in a container: disorderly, 

random distribution of particles with a Maxwell-

Boltzmann distribution of speeds.

• It is so unlikely that all these particles would 

ever end up in one corner of the container that it 

might as well be impossible.

• With energy transfer, the gas can be forced into 

one corner, its entropy greatly reduced.

• But left alone, it will spontaneously increase its 

entropy and return to the normal conditions, 

because they are immensely more likely.



Precise microscopic definition of entropy

𝑆 ≡ 𝑘𝐵 log 𝑊

• 𝑆 = entropy.

• 𝑘𝐵 ≡ 1.380649 × 10−23 J/K = Boltzmann’s constant.

• 𝑊 = number of microstates corresponding to the given 

microstate.

• log = natural logarithm (log𝑒  or ln)

• This can be used to prove the macroscopic definition Δ𝑆 = 𝑄/𝑇!



Numerical examples: 
100 coin tosses

• 100 heads: S = 𝑘𝐵 log 1 = 0

• 99 heads: S ≈ 6.4 × 10−23 J/K

• 75 heads: S ≈ 7.4 × 10−22 J/K

• 60 heads: S ≈ 8.9 × 10−22 J/K

• 50 heads: S ≈ 9.2 × 10−22 J/K

(maximum entropy)

(Some) macrostates # of microstates

100 H 1

99 H, 1 T 100

95 H, 5 T 7.5 × 107

90 H, 10 T 1.7 × 1013

75 H, 25 T 2.4 × 1023

60 H, 40 T 1.4 × 1028

55 H, 45 T 6.1 × 1028

51 H, 49 T 9.9 × 1028

50 H, 50 T 1.0 × 1029

Total: 1.3 × 1030
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