PHYS 1P22/92 Prof. Barak Shoshany Spring 2024

22. Magnetism

22.1 Magnets

North and south poles

- Interaction between magnets: like poles repel and unlike poles attract.
- Similar to the sign of electric charge, but not the same.

Likes repel

Magnetic materials

 Magnets also attract iron and other magnetic materials which are not themselves magnets.

Earth's magnetic field

- Compass: north pole of a magnet points towards the north **geographic** pole.
- The Earth is like a huge magnet, with the south magnetic pole at the north geographic pole.

Magnetic dipoles

- Dipole = two poles.
- Poles cannot be separated.
 Splitting a dipole always results in two smaller dipoles.
- At the lowest scales, the individual atoms are dipoles.
- In fact, even subatomic particles (electrons, protons, neutrons) are also dipoles.

Magnetic monopoles

- Monopole = one pole.
- Isolated north or south poles would behave like electric charges.
- Predicted by some very speculative theories, but never observed (those theories are probably incorrect).
- It's currently unknown whether magnetic monopoles exist.

22.2 Ferromagnets and Electromagnets

Ferromagnetic materials

- Respond strongly to magnets.
- Can be made into magnets (temporarily or permanently).
- Examples: iron, cobalt, nickel, gadolinium, neodymium.

Magnetization & domains

Demagnetization

- A permanent magnet can be demagnetized by hard blows or heat.
- Ferromagnetic materials cannot be magnetized above the Curie temperature.
 - For example: 1043 K (770 °C) for iron.

Electromagnets

- Electrical current can create temporary magnets.
- Applications:
 - MRI
 - Data storage (but not so much today)

Electromagnet vs. permanent magnet

Combining electromagnet and ferromagnet

All magnets are due to electric currents!

Atom

Electron

Simulation

• Simulation of magnets and electromagnets:

<u>https://phet.colorado.edu/sims/cheerpj/faraday/latest/faraday.ht</u> <u>ml?simulation=magnets-and-electromagnets</u>

22.3 Magnetic Fields and Magnetic Field Lines

Magnetic field

- Vector **B** at each point.
- Has the same direction as a small compass at each point.
- Field lines: connecting all the arrows (like electric field lines).

Circular current loop (similar to bar magnet)

Long straight wire (field lines circle the wire) Field goes into the screen (use right-hand rule)

Rules for magnetic field lines:

1. Tangent to the magnetic field at each point.

2. Density of lines is proportional to magnitude of the magnetic field.

3. Can never cross each other (why?)

4. Always form closed loops from north to south pole.

(if magnetic monopoles existed, lines would start and end on them.)

Demonstration

See the magnetic field in 3D! (Live demonstration)

22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

Cross product:

a × b

- Direction given by right-hand rule.
- Magnitude given by area of a parallelogram:

 $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta$

 θ is the angle between **a** and **b**.

Properties (prove!):

- $\mathbf{a} \times \mathbf{a} = \mathbf{0}$
- $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ if \mathbf{a} parallel to \mathbf{b}
- $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|$ if **a** perpendicular to **b**
- $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$

Force on a point charge (electric + magnetic)

- Lorentz force: $\mathbf{F} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$
- $\mathbf{F} = \text{force}$
- q = charge
- $\mathbf{E} = \text{electric field}$
- **v** = velocity of charge
- **B** = magnetic field
- × = cross product

Force on a point charge (magnetic only)

• Lorentz force:

 $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$

- Direction: right-hand rule (there are two, either one works)
- Magnitude:

 $F = qvB\sin\theta$

- Properties (prove!):
 - No force on neutral particle.
 - No force on charge at rest.
 - No force on charge moving parallel to magnetic field.
 - Strongest force on charge moving perpendicular to magnetic field.

$$F = qvB\sin\theta \implies B = \frac{F}{qv\sin\theta}$$

• SI units: tesla (T)

$$1 T = \frac{1 N}{C \cdot m/s} = \frac{kg}{A \cdot s^2} \text{ (in base SI)}$$

• Examples:

- Earth's magnetic field: $\sim 32 \ \mu T = 32 \times 10^{-6} \ T$
- Refrigerator magnet: $\sim 5 \text{ mT} = 5 \times 10^{-3} \text{ T}$
- MRI machine: ~ 1.5 to 3 T
- Large Hadron Collider: ~8 T
- White dwarf, a very dense stellar remnant (dead star): $\sim 100 \text{ T}$
- Neutron star, an even denser stellar remnant: $\sim 10^4$ to 10^{11} T (magnetar)
- Old units: gauss (G), $1 \text{ G} = 10^{-4} \text{ T}$.

22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications

Circular motion

- Magnetic force is always perpendicular to velocity (cross product).
- So it does **no work** on the charged particle:

$$\theta = \frac{\pi}{2} \Rightarrow$$

$$W = \mathbf{F} \cdot \mathbf{d} = Fd \cos \theta = 0$$

• Direction of motion changes, but not speed (kinetic energy is constant).

Circular motion

• If **v** is perpendicular to **B** then $F = qvB \sin \theta = qvB$

 $(\theta = \pi/2, \text{ not the same } \theta!)$

• This supplies the centripetal force:

$$F = \frac{mv^2}{r} = qvB$$

• Thus:

$$r = \frac{mv}{qB}$$

Spiral motion

- If v is not perpendicular to B then we consider its component v_{\perp} perpendicular to the field.
- The component v_{\parallel} parallel to the field is unaffected.
- This causes spiral motion instead of circular.
- Application: bubble chamber. Can detect particles and measure their mass and charge by observing their path in a magnetic field.

Magnetic mirror

- Field strength increases in direction of motion.
- Charges slow and eventually reverse their motion.

Auroras (northern/southern lights)

- Solar winds are very fast and very hot charged particles that emanate from the Sun.
 - Protons
 - Electrons
 - Alpha particles (2 protons + 2 neutrons, like a ⁴He nucleus)
- The Earth is shielded from them by its magnetic field at the magnetosphere.
- Otherwise the atmosphere would be stripped off the planet!

The field is "squashed" on the side of the Sun due to the solar winds.

.........

- The particles flow along the magnetic field lines towards the poles.
- When they collide with nitrogen and oxygen atoms in the atmosphere, causing them to emit photons.
 - Oxygen = green/yellow/red light
 - Nitrogen = blue light
- This is called an aurora and can be seen at the "auroral oval", around 10-20° from the poles.

Forecast Lead Time: 64 minutes HPI: 31.6 GW (Range 5 to 200)

IOAA

NOAA Space Weather Prediction Center Aurora Forecast For 2022-03-10 03:39 (UTC)

9

Forecast Lead Time: 64 minutes HPI: 30.1 GW (Range 5 to 200)

Probability of Aurora10%50%90%

0 1 2 3 4 >4 Approximate Energy Deposition ergs/cm2 OVATION Aurora Model Model Run at 2022-03-10 02:35 (UTC) L1 Observations at 2022-03-10 02:31 (UTC)

Probability of Aurora10%50%90%

0 1 2 3 4 >4 Approximate Energy Deposition ergs/cm2 OVATION Aurora Model Model Run at 2022-03-10 02:35 (UTC) L1 Observations at 2022-03-10 02:31 (UTC)

The Van Allen radiation belts

- Regions where energetic charged particles from the solar wind are trapped.
- Inner belt: 1,000-12,000 km from Earth
- Outer belt: 13,000 to 60,000 km from Earth

(Skipping sections 22.6-22.8)

22.9 Magnetic Fields Produced by Currents: Ampere's Law

Long straight wire

$$B = \frac{\mu_0 I}{2\pi r}$$

- B = magnitude of magnetic field.
- $\mu_0 \approx 1.26 \times 10^{-6} \text{ N/A}^2 = \text{vacuum}$ permeability.
- I = current.
- r = radius (shortest distance).
- Direction determined by the righthand rule.

Circular loop

Only valid at the center of the loop.

Solenoid (long coil of wire)

Approximately uniform field: $B = \mu_0 nI$

n is the number of loops per unit length. If N = number of loops and L = length, then $n \equiv N/L$.

