Time Travel Paradoxes and Entangled Timelines

Barak Shoshany

Assistant Professor of Physics

Brock University, St. Catharines, Ontario, Canada

Motivation

- Time travel may be possible
 - GR solutions with CTCs/CCCs
 - FTL: wormholes/warp drives \rightarrow time travel?
- If possible: paradoxes?
 - Consistency: grandfather
 - Bootstrap: time loops
 - Inconsistent with known physics
- Proposed solutions
 - Hawking chronology protection: boring
 - Novikov self-consistency: problematic
 - Parallel timelines: solve all paradoxes, but no concrete models

Parallel timeline models

- General relativity: branching spacetimes
 - Non-Hausdorff manifold? (Hausdorff = distinct points have disjoint neighborhoods)
 - Non-locally-Euclidean? (Locally Euclidean = every point has a neighborhood homeomorphic to \mathbb{R}^n)
 - Mathematically intractable, no branching mechanism
- Quantum mechanics
 - Deutsch D-CTCs: Everett / "many-worlds" interpretation (MWI)
 - Uses reduced/mixed states, destroys information about timelines
 - Our new model (with Zipora Stober): "entangled timelines" (E-CTCs)

The generic paradox

- Independent of geometry/topology or specific physical system
- Time machine \mathcal{H}_{CTC} : occupation number
 - $|0\rangle$ = empty (time travel has not occurred)
 - $|1\rangle$ = not empty (time travel has occurred)
- External system \mathcal{H}_{ex} (human, billiard ball, particle): control bit
 - $|0\rangle =$ won't go in (time travel will not occur)
 - $|1\rangle$ = will go in (time travel will occur)
- Logical, not physical states

The generic paradox

- $|\Psi(t)\rangle = \mathcal{H}_{\text{CTC}} \otimes \mathcal{H}_{\text{ex}}$
- True consistency paradox: time travel iff no time travel
- Cyclic
- Novikov does not apply; no way to make this consistent

Time	State/Event
t = 0	$ 0 angle\otimes 1 angle$
ø	Nothing happens
t = 1	$ 0 angle\otimes 1 angle$
6	Time travel occurs
t = 0	$ 1 angle\otimes 1 angle$
\bigcirc	Time travel is prevented
t = 1	$ 1 angle\otimes 0 angle$
6	Time travel does not occur
t = 0	$ 0 angle\otimes 1 angle$

Alice and the bomb

- At t = 1, Alice puts bomb inside time machine, sends to t = 0
- At t = 0, Alice opens the time machine door and is killed
- Now Alice cannot send bomb at t = 1, so she's alive at t = 0
- Classic consistency paradox
- Macroscopic: cannot be precise, issues of free will, etc...
- Treat Alice's states as equivalence classes of states with same macroscopic behavior

Alice and the bomb

- Formulate using generic paradox.
- For \mathcal{H}_{CTC} : (time machine)
 - $|0\rangle \equiv |\text{empty}\rangle$
 - $|1\rangle \equiv |bomb\rangle$
- For \mathcal{H}_{ex} : (Alice)
 - $|0\rangle \equiv |\text{dead}\rangle$
 - $|1\rangle \equiv |alive\rangle$

Time	State/Event	
t = 0	$ empty\rangle \otimes alive\rangle$	
ſ	Nothing happens	
t = 1	$ empty\rangle \otimes alive\rangle$	
6	Alice sends a bomb back in time	
t = 0	$ bomb\rangle \otimes alive\rangle$	
D	Bomb explodes, Alice dies	
t = 1	$ bomb\rangle \otimes dead\rangle$	
6	Dead Alice cannot send a bomb	
t = 0	$ empty\rangle \otimes alive\rangle$	

Particle annihilation

- Microscopic (simpler)
- For \mathcal{H}_{CTC} : (time machine)
 - $|0\rangle \equiv |\text{empty}\rangle$
 - $|1\rangle \equiv |\text{particle}\rangle$
- For \mathcal{H}_{ex} : (particle)
 - $|0\rangle \equiv |annihilated\rangle$
 - $|1\rangle \equiv |\text{not annihilated}\rangle$

Time	State/Event	
t = 0	$ empty angle \otimes not annihilated angle$	
٢	Nothing happens	
t = 1	$ empty angle \otimes not annihilated angle$	
6	Particle goes into time machine	
t = 0	$ particle\rangle \otimes not annihilated\rangle$	
D	Past and future particles annihilate	
t = 1	\square particle} \otimes annihilated>	
6	Particle doesn't go into time machine	
t = 0	$ empty\rangle \otimes not annihilated\rangle$	
t = 0 t = 1 () t = 0	<pre> particle⟩ ⊗ not annihilated⟩ Past and future particles annihilate particle⟩ ⊗ annihilated⟩ Particle doesn't go into time machine empty⟩ ⊗ not annihilated⟩</pre>	

Note: This means a particle has traveled through, not that it still exists

Classical timelines: generic

Time	Timeline $m{h}=m{0}$	Timeline $h = 1$
t = 0	$ 0\rangle \otimes 1\rangle$	$ 1\rangle \otimes 1\rangle$
D	Nothing happens	Time travel is prevented
t = 1	$ 0 angle\otimes 1 angle$	$ 1 angle\otimes 0 angle$
6	Time travel occurs	Time travel does not occur

Note: \mathcal{H}_{CTC} state $|0\rangle$ or $|1\rangle$ indicates the timeline

Classical timelines: macroscopic

Time	Timeline $oldsymbol{h}=oldsymbol{0}$	Timeline $h = 1$
t = 0	$ empty\rangle \otimes alive\rangle$	$ bomb\rangle \otimes alive\rangle$
D	Nothing happens	Bomb explodes, Alice dies
t = 1	$ empty\rangle \otimes alive\rangle$	$ bomb\rangle \otimes dead\rangle$
6	Alice sends a bomb back in time	Dead Alice cannot send a bomb

Classical timelines: microscopic

Time	Timeline $h = 0$	Timeline $h = 1$
t = 0	$ empty\rangle \otimes not annihilated\rangle$	$ particle\rangle \otimes not annihilated\rangle$
D	Nothing happens	Past and future particles annihilate
t = 1	$ empty\rangle \otimes not annihilated\rangle$	$ particle\rangle \otimes annihilated\rangle$
6	Particle goes into time machine	Particle doesn't go into time machine

Quantum superposition

- \mathcal{H}_{ex} always has initial condition $|1\rangle$, so no superposition at t = 0
- But \mathcal{H}_{CTC} can be in superposition: $|\Psi(0)\rangle = (\alpha|0\rangle + \beta|1\rangle) \otimes |1\rangle, \qquad |\alpha|^2 + |\beta|^2 = 1$
- Unitary evolution operator U from t = 0 to t = 1: $U(|0\rangle \otimes |1\rangle) = |0\rangle \otimes |1\rangle, \quad U(|1\rangle \otimes |1\rangle) = |1\rangle \otimes |0\rangle$
- Just CNOT gate:

$$U(|x\rangle \otimes |y\rangle) = |x\rangle \otimes |x + y\rangle$$

 $\begin{array}{l} (x, y \in \mathbb{Z}_2 \text{ and } \dotplus \text{ is addition mod } 2) \\ |\Psi(1)\rangle = U|\Psi(0)\rangle = \alpha|0\rangle \otimes |1\rangle + \beta|1\rangle \otimes |0\rangle \end{array}$

• State became entangled!

Quantum superposition

• Define timeline correlation operator *T* between *t* = 1 and *t* = 0 at different *h*:

 $T(|x\rangle \otimes |y\rangle) = |y\rangle \otimes |1\rangle$

- Not unitary; loses info about $|x\rangle$, as it does not affect time travel
- Not evolution; just correlation $T|\Psi(1)\rangle = \alpha|1\rangle \otimes |1\rangle + \beta|0\rangle \otimes |1\rangle$
- Compare to initial state:

 $|\Psi(0)\rangle = \alpha |0\rangle \otimes |1\rangle + \beta |1\rangle \otimes |1\rangle$

• So $\alpha = \beta = 1/\sqrt{2}$ (up to phase)

Collapse interpretation

• State at t = 1:

$$|\Psi(1)\rangle = \frac{1}{\sqrt{2}}(|0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle)$$

- Collapses to $|0\rangle\otimes|1\rangle$ or $|1\rangle\otimes|0\rangle$ with 50% probability
- Correlates with either $|1\rangle \otimes |1\rangle$ or $|0\rangle \otimes |1\rangle$ at t = 0
- Collapse will destroy superposition, so paradox reappears
- Quantum superposition solution doesn't work in collapse models!

Many-worlds interpretation

• Alice has a qubit:

$$|\text{qubit}\rangle = a|0\rangle + b|1\rangle$$

- Measurement: collapses to 0 or 1, **non-unitary** evolution
- Solution: consider Alice's state too $|\Psi(0)\rangle = (a|0\rangle + b|1\rangle) \otimes |Alice\rangle$ $|\Psi(1)\rangle = a|0\rangle \otimes |Alice saw 0\rangle + b|1\rangle \otimes |Alice saw 1\rangle$
- Unitary evolution (similar to CNOT gate)
- MWI = "unmodified" (purely unitary) QM

Entangled worlds

- Recall:
 - $|\Psi(1)\rangle = a|0\rangle \otimes |Alice \operatorname{saw} 0\rangle + b|1\rangle \otimes |Alice \operatorname{saw} 1\rangle$
- Alice and qubit are now entangled; Alice "branches" into two
- Each Alice sees "collapse" from her own perspective
- Superposition ≠ measurement outcomes or knowledge
- Interpret as multiplicity of "worlds"
- Not physically distinct universes! Just 2 different terms in universal quantum state

Spreading of branches

- Consider Bob. Before measurement: $|\Phi(0)\rangle = (a|0\rangle + b|1\rangle) \otimes |Alice\rangle \otimes |Bob\rangle$
- Alice measures:

 $|\Phi(1)\rangle = (a|0\rangle \otimes |Alice \text{ saw } 0\rangle + b|1\rangle \otimes |Alice \text{ saw } 1\rangle) \otimes |Bob\rangle$

• Alice tells Bob what she measured:

 $|\Phi(2)\rangle = a|0\rangle \otimes |Alice saw 0\rangle \otimes |Bob heard 0\rangle$ $+b|1\rangle \otimes |Alice saw 1\rangle) \otimes |Bob heard 1\rangle$

- All 3 systems now entangled; branching spread further
- At $t \to \infty$ branching will spread to the entire universe (causal future)
- Branching is not global; it's local and spreads causally

Common misconceptions

- Misconception 1: branching happens upon measurement
- Correction: branching happens upon interaction between any two systems (e.g. Alice tells Bob the result)
- **Misconception 2:** branching instantaneously creates entire new parallel universes from scratch
- Correction: branching is just gradual and causal spreading of entanglement to more systems within a single universe
- Better name for MWI: "entangled worlds" or "entangled histories"?

Entangled timelines

- Back to time travel. At t = 0, state is separable: $|\Psi(0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |1\rangle$
- Time machine ($\mathcal{H}_{\rm CTC})$ has 2 timelines; external system ($\mathcal{H}_{\rm ex})$ has only 1 timeline
- At t = 1, state is entangled: $|\Psi(1)\rangle = \frac{1}{\sqrt{2}}(|0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle)$
- Both systems have 2 timelines
- Systems entangled, so both must share the same timelines

Spreading timelines

- Timelines spread locally like branches in MWI
- Macroscopic: Bob opens door to lab, finds Alice alive or dead
- Microscopic: detector detects products of annihilation or not
- "Parallel timelines" or "parallel universes" are just local branching
- Start by interacting with time machine, then spread out

Conclusions

- QM with the MWI provides a simple and natural way to resolve time travel paradoxes
- The abstract generic paradox qubit model can be mapped onto more complicated macroscopic/microscopic models
- No need to worry about mechanisms for creating new physically distinct universes
- There is only one universe; timelines are emergent structures resulting from entanglement between systems
- Timelines propagate locally, gradually, and causally

References

- Barak Shoshany, "Lectures on Faster-Than-Light Travel and Time Travel", arXiv:1907.04178
- Jacob Hauser and Barak Shoshany, "Time Travel Paradoxes and Multiple Histories", <u>arXiv:1911.11590</u>
- Barak Shoshany and Jared Wogan, "Wormhole Time Machines and Multiple Histories", <u>arXiv:2110.02448</u>
- Barak Shoshany and Ben Snodgrass, "Warp Drives and Closed Timelike Curves", <u>arXiv:2309.10072</u>
- Barak Shoshany and Zipora Stober, "Time Travel Paradoxes and Entangled Timelines", <u>arXiv:2303.07635</u>
- Alessandro Pisana, Barak Shoshany, Stathis Antoniou, Louis H. Kauffman, and Sofia Lambropoulou, "Wormhole Nucleation via Topological Surgery in Lorentzian Geometry", <u>arXiv:2505.02210</u>